Skip to main content
Log in

A Generalization of the Chevalley–Warning and Ax–Katz Theorems with a View Towards Combinatorial Number Theory

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Let \({\mathbb {F}}_q\) be a finite field of characteristic p and order q. The Chevalley–Warning Theorem asserts that the set V of common zeros of a collection of polynomials must satisfy \(|V|\equiv 0\mod p\), provided the number of variables is sufficiently large with respect to the degrees of the polynomials. The Ax–Katz Theorem generalizes this by giving tight bounds for higher order p-divisibility for |V|. Besides the intrinsic algebraic interest of these results, they are also important tools in the Polynomial Method, particularly in the prime field case \({\mathbb {F}}_p\), where they have been used to prove many results in Combinatorial Number Theory. In this paper, we begin by explaining how arguments used by Wilson to give an elementary proof of the \({\mathbb {F}}_p\) case for the Ax–Katz Theorem can also be used to prove the following generalization of the Ax–Katz Theorem for \({\mathbb {F}}_p\), and thus also the Chevalley–Warning Theorem, where we allow varying prime power moduli. Given any box \({\mathcal {B}}={\mathcal {I}}_1\times \ldots \times {\mathcal {I}}_n\), with each \({\mathcal {I}}_j\subseteq {\mathbb {Z}}\) a complete system of residues modulo p, and a collection of nonzero polynomials \(f_1,\ldots ,f_s\in {\mathbb {Z}}[X_1,\ldots ,X_n]\), then the set of common zeros inside the box,

$$\begin{aligned} V=\{{\textbf{a}}\in {\mathcal {B}}:\; f_1({{\textbf {a}}})\equiv 0\mod p^{m_1},\ldots ,f_s({{\textbf {a}}})\equiv 0\mod p^{m_s}\}, \end{aligned}$$

satisfies \(|V|\equiv 0\mod p^m\), provided \(n>(m-1)\max _{i\in [1,s]}\Big \{p^{m_i-1}\deg f_i\Big \}+ \sum \nolimits _{i=1}^{s}\frac{p^{m_i}-1}{p-1}\deg f_i.\) The introduction of the box \({\mathcal {B}}\) adds a degree of flexibility, in comparison to prior work of Sun. Indeed, incorporating the ideas of Sun, a weighted version of the above result is given. We continue by explaining how the added flexibility, combined with an appropriate use of Hensel’s Lemma to choose the complete system of residues \({\mathcal {I}}_j\), allows many combinatorial applications of the Chevalley–Warning and Ax–Katz Theorems, previously only valid for \({\mathbb {F}}_p^n\), to extend with bare minimal modification to validity for an arbitrary finite abelian p-group G. We illustrate this by giving several examples, including a new proof of the exact value of the Davenport Constant \({\textsf{D}}(G)\) for finite abelian p-groups, and a streamlined proof of the Kemnitz Conjecture. We also derive some new results, for a finite abelian p-group G with exponent q, regarding the constant \({\textsf{s}}_{kq}(G)\), defined as the minimal integer \(\ell \) such that any sequence of \(\ell \) terms from G must contain a zero-sum subsequence of length kq. Among other results for this constant, we show that \({\textsf{s}}_{kq}(G)\le kq+{\textsf{D}}(G)-1\) provided \(k>\frac{d(d-1)}{2}\) and \(p> d(d-1)\), where , answering a problem of Xiaoyu He in the affirmative by removing all dependence on p from the bound for k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Aichinger, E., Moosbauer, J.: Chevalley-Warning type results on abelian groups. J. Algebra 569, 30–66 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Alon, N., Dubiner, M.: Zero-sum sets of prescribed size, in Combinatorics, Paul Erdős is Eighty, János Bolyai Math. Soc., Budapest. pp. 33–50 (1993)

  3. Alon, N., Dubiner, M.: A lattice point problem and additive number theory. Combinatorica 15, 301–309 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Ax, J.: Zeroes of polynomials over finite fields. Am. J. Math. 86, 255–261 (1964)

    MathSciNet  MATH  Google Scholar 

  5. Baayen, P.C.: Een combinatorisch probleem voor eindige abelse groepen, in Colloquium Discrete Wiskunde, MC Syllabus 5, pp. 76–108. Mathematisch Centrum, Amsterdam (1968)

    Google Scholar 

  6. Baoulina, I., Bishnoi, A., Clark, P.: A generalization of the theorems of Chevalley-Warning and Ax-Katz via polynomial substitutions. Proc. Am. Math. Soc. 147(10), 4107–4122 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bitz, J., Griffith, S., He, Xiaoyu: Exponential lower bounds on the generalized Erdös-Ginzburg-Ziv constant. Discret. Math. 343(12), 112083 (2020). (4)

    MATH  Google Scholar 

  8. Brink, D.: Chevalley’s theorem with restricted variables. Combinatorica 31(1), 127–130 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Cahen, P.-J., Chabert, J.-L.: Integer valued polynomials, mathematical surveys and monographs 48, American Mathematical Society (1997)

  10. Cao, W.: A partial improvement of the Ax-Katz theorem. J. Number Theory 132, 485–494 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Cao, W., Sun, Q.: Improvements upon the Chevalley-warning-Ax-Katz-type estimates. J. Number Theory 122(1), 135–141 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Cao, W., Wan, D.: Divisibility on point counting over finite Witt rings. Finite Fields Appl. 91, 102254 (2023). (25)

    MathSciNet  MATH  Google Scholar 

  13. Castro, F.N., Moreno an I Rubio, O.: An improvement of a theorem of Carlitz. J. Pure Appl. Algebra 224(5), 106246 (2020). (7)

    MathSciNet  MATH  Google Scholar 

  14. Chevalley, C.: Démonstration d’une hypothèse de M. Artin. Abh. Math. Sem. Hamburg 11, 73–75 (1936)

    MATH  Google Scholar 

  15. Clark, P., Schauz, W.: Functional Degrees and Arithmetics Applications I: The Set of Fucntional Degrees, preprint

  16. Clark, P., Forrow, A., Schmitt, J.R.: Warning’s second theorem with restricted variables. Combinatorica 37(3), 397–417 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Clark, P., Genao, T., Saia, F.: Chevalley-warning at the boundary. Expo. Math. 39(4), 604–623 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Dickson, L. E.: History of the Theory of Numbers, Vol. I, AMS Chelsea Publ., (1999)

  19. Erdős, P., Ginzburg, A., Ziv, A.: Theorem in additive number theory. Bull. Res. Council Israel 10F, 41–43 (1961)

    MathSciNet  MATH  Google Scholar 

  20. Fleck, A.: Sitzungs. Berlin Math. Gesell. 13, 2–6 (1913)

    Google Scholar 

  21. Gao, W., Hong, S., Peng, J.: On zero-sum subsequences of length \(k\exp (G)\) II, J. Combin. Theory Ser. A 187 (2022), Paper No. 105563, 34 pp

  22. Gao, W.: On zero-sum subsequences of restricted size II. Discret. Math. 271(1–3), 51–59 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Gao, W., Han, D., Peng, J., Sun, F.: On zero-sum subsequences of length \(k\exp (G)\). J. Combin. Theory Ser. A 125, 240–253 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Garrett, P.: Abstract Algebra, Chapman & Hall/CRC (2008)

  25. Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics 278, Chapman & Hall/CRC (2006)

  26. Grynkiewicz, D.J.: Structural Additive Theory, Developments in Mathematics 30. Springer, Cham (2013)

    Google Scholar 

  27. Han, D., Zhang, H.: On zero-sum subsequences of prescribed length. Int. J. Number Theory 14(1), 167–191 (2018)

    MathSciNet  MATH  Google Scholar 

  28. He, X.: Zero-sum subsequences of length \(kq\) over finite abelian \(p\)-groups. Discret. Math. 339(1), 399–407 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Hou, X.-D.: A note on the proof of a theorem of Katz. Finite Fields Appl. 11, 316–319 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Katz, N.: On a theorem of Ax. Am. J. Math. 93, 485–499 (1971)

    MathSciNet  MATH  Google Scholar 

  31. Kemnitz, A.: On a lattice point problem. ARS Combinatoria 16b, 151–160 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Kubertin, S.: Zero-sums of length \(kq\) in \({\mathbb{Z} }_q^d\). Acta Arith. 116(2), 145–152 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Moreno, O., Moreno, C.J.: Improvements of the Chevalley-warning and the Ax-Katz theorem. Am. J. Math. 117, 241–244 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Moreno, O., Shum, K., Castro, F.N., Kumar, V.P.: Tight bounds for Chevalley-warning-Ax-Katz type estimates, with improved applications. Proc. London Math. Soc. (3) 88(3), 545–564 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Nathanson, M.: Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Graduate Textbooks in Mathematics 165. Springer, Berlin (1991)

    Google Scholar 

  36. Niven, I., Zuckerman, H., Montgomery, H.: An Introduction to the Theory of Numbers, 5th edn. Wiley, London (1991)

    MATH  Google Scholar 

  37. Olson, J.E.: A combinatorial problem on finite abelian groups I. J. Number Theory 1, 8–10 (1969)

    MathSciNet  MATH  Google Scholar 

  38. Reiher, C.: On Kemnitz’ conjecture concerning lattice-points in the plane. Ramanujan J. 13(1–3), 333–337 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Rónyai, L.: On a conjecture of Kemnitz. Combinatorica 20(4), 569–573 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Savchev, S., Chen, F.: Note Kemnitz’ conjecture revisited. Discrete Math. 297, 196–201 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Schanuel, S.H.: An extension of Chevalley’s theorem to congruences modulo prime powers. J. Number Theory 6, 284–290 (1974)

    MathSciNet  MATH  Google Scholar 

  42. Serre, J.-P., Fields, L.: Graduate Texts in Mathematics 67. Springer, Berlin (1979)

    Google Scholar 

  43. Sun, Z.-W.: Extensions of Wilson’s lemma and the Ax-Katz Theorem, unpublished (2006), arXiv:math.NT/0608560

  44. Sun, Z.-W., Wan, D.: Lucas type congruences for cyclotomic \(\Psi \)-coefficients. Int. J. Number Theory 4(2), 155–170 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Tao T., Vu, V.: Additive Combinatorics, Cambridge Studies in Advanced Mathematics 105, Cambridge University Press (2010)

  46. Wan, D.: Combinatorial congruences and \(\Psi \)-operators, Finite Fields Appl. (2006), no. 4, 693–703

  47. Wan, D.: An elementary proof of a theorem of Katz. Am. J. Math. 111, 1–8 (1989)

    MathSciNet  MATH  Google Scholar 

  48. Wan, D.: A Chevalley-Warning approach to \(p\)-adic estimates of character sums. Proc. Am. Math. Soc. 123, 45–54 (1995)

    MathSciNet  MATH  Google Scholar 

  49. Warning, E.: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem. Hamburg 11, 76–83 (1936)

    MathSciNet  MATH  Google Scholar 

  50. Weidong, G., Thangadurai, R.: On zero-sum sequences of prescribed length. Aequationes Math. 72(3), 201–212 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Weisman, C.S.: Some congruences for binomial coefficients. Michigan Math. J. 24, 141–151 (1977)

    MathSciNet  MATH  Google Scholar 

  52. Wilson, R.: A lemma on polynomials modulo \(p^m\) and applications to coding theory. Discrete Math. 306(23), 3154–3165 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank the referees for their many helpful suggestions for improving the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Grynkiewicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grynkiewicz, D.J. A Generalization of the Chevalley–Warning and Ax–Katz Theorems with a View Towards Combinatorial Number Theory. Combinatorica 43, 1179–1213 (2023). https://doi.org/10.1007/s00493-023-00057-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00057-0

Keywords

Mathematics Subject Classification

Navigation