Skip to main content
Log in

On the Asymptotic Confirmation of the Faudree–Lehel Conjecture for General Graphs

Combinatorica Aims and scope Submit manuscript

Cite this article

Abstract

Given a simple graph G, the irregularity strength of G, denoted by s(G), is the least positive integer k such that there is a weight assignment on edges \(f: E(G) \rightarrow \{1,2,\dots , k\}\) attributing distinct weighted degrees: \(\tilde{f}(v):= \sum _{u: \{u,v\}\in E(G)} f(\{u,v\})\) to all vertices \(v\in V(G)\). It is straightforward that \(s(G) \ge n/d\) for every d-regular graph G on n vertices with \(d>1\). In 1987, Faudree and Lehel conjectured in turn that there is an absolute constant c such that \(s(G) \le n/d + c\) for all such graphs. Even though the conjecture has remained open in almost all relevant cases, it is more generally believed that there exists a universal constant c such that \(s(G) \le n/{\delta }+ c\) for every graph G on n vertices with minimum degree \({\delta }\ge 1\) which does not contain an isolated edge; In this paper we confirm that the generalized Faudree–Lehel Conjecture holds for graphs with \({\delta }\ge n^\beta \) where \(\beta \) is any fixed constant larger than 0.8; Furthermore, we confirm that the conjecture holds in general asymptotically. That is, we prove that for any \(\varepsilon \in (0,0.25)\) there exist absolute constants \(c_1, c_2\) such that for all graphs G on n vertices with minimum degree \({\delta }\ge 1\) and without isolated edges, \(s(G) \le \frac{n}{{\delta }}(1+\frac{c_1}{{\delta }^{\varepsilon }})+c_2\); We thereby extend in various aspects and strengthen a recent result of Przybyło, who showed that \(s(G) \le \frac{n}{d}\big (1+ \frac{1}{\ln ^{\varepsilon /19}n} \big )=\frac{n}{d}(1+o(1))\) for d-regular graphs with \(d\in [\ln ^{1+\varepsilon } n, n/\ln ^{\varepsilon }n]\). We also improve the earlier general upper bound: \(s(G)< 6\frac{n}{{\delta }}+6\) of Kalkowski, Karoński and Pfender.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Chartrand, G., Jacobson, M. S., Lehel, J., Oellermann, O. R. Ruiz, S., Saba, F.: Irregular networks, vol. 64, pp. 197–210 (1988). 250th Anniversary Conference on Graph Theory, Fort Wayne (1986)

  2. Alavi, Y., Chartrand, G., Chung, F.R.K., Erdős, P., Graham, R.L., Oellermann, O.R.: Highly irregular graph. J. Graph Theory 11(2), 235–249 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alavi, Y., Boals, Y., Chartrand, G., Erdős, P., Oellermann, O.R.: \(k\)-Path irregular graph. Congr. Numer. 65, 201–210 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Chartrand, G., Erdős, P., Oellermann, O.R.: How to define an irregular graph. Coll. Math. J. 19(1), 36–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aigner, M., Triesch, E.: Irregular assignments of trees and forests. SIAM J. Discret. Math. 3(4), 439–449 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nierhoff, T.: A tight bound on the irregularity strength of graphs. SIAM J. Discret. Math. 13(3), 313–323 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faudree, R.J., Lehel, J.: Bound on the irregularity strength of regular graphs. Combin. Colloq. Math. Soc. János Bolyai 52, 247–256 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Lehel, J.: Facts and quests on degree irregular assignments. In: Graph Theory, Combinatorics, and Applications, vol. 2 (Kalamazoo, MI, 1988). Wiley, New York, pp. 765–781 (1991)

  9. Cuckler, B., Lazebnik, F.: Irregularity strength of dense graphs. J. Graph Theory 58(4), 299–313 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B.A., Thomason, A.: Vertex-colouring edge-weightings. Combinatorica 27(1), 1–12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Addario-Berry, L., Aldred, R.E.L., Dalal, K., Reed, B.A.: Vertex colouring edge partitions. J. Combin. Theory Ser. B 94(2), 237–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Amar, D.: Irregularity strength of regular graphs of large degree. Discret. Math. 114, 9–17 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anholcer, M., Kalkowski, M., Przybyło, J.: A new upper bound for the total vertex irregularity strength of graphs. Discret. Math. 309(21), 6316–6317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bača, M., Jendroľ, S., Miller, M., Ryan, J.: On irregular total labellings. Discret. Math. 307, 1378–1388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bartnicki, T., Grytczuk, J., Niwczyk, S.: Weight choosability of graphs. J. Graph Theory 60(3), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bensmail, J., Merker, M., Thomassen, C.: Decomposing graphs into a constant number of locally irregular subgraphs. Eur. J. Combin. 60, 124–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bohman, T., Kravitz, D.: On the irregularity strength of trees. J. Graph Theory 45, 241–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao, L.: Total weight choosability of graphs: Towards the 1-2-3-conjecture. J. Combin. Theory B 149(1–2), 109–146 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dinitz, J.H., Garnick, D.K., Gyárfás, A.: On the irregularity strength of the \(m \times n\) grid. J. Graph Theory 16, 355–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faudree, R.J., Jacobson, M.S., Lehel, J., Schelp, R.: Irregular networks, regular graphs and integer matrices with distinct row and column sums. Discret. Math. 76, 223–240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Faudree, R.J., Lehel, J.: Bound on the irregularity strength of regular graphs. Combin. Colloq. Math. Soc. János Bolyai 52, 247–256 (1987)

    MathSciNet  Google Scholar 

  22. Ferrara, M., Gould, R.J., Karoński, M., Pfender, F.: An iterative approach to graph irregularity strength. Discret. Appl. Math. 158, 1189–1194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frieze, A., Gould, R.J., Karoński, M., Pfender, F.: On graph irregularity strength. J. Graph Theory 41(2), 120–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gyárfás, A.: The irregularity strength of \(K_{m, m}\) is \(4\) for odd \(m\). Discret. Math. 71, 273–274 (1998)

    Article  MATH  Google Scholar 

  25. Kalkowski, M., Karoński, M., Pfender, F.: A new upper bound for the irregularity strength of graphs. SIAM J. Discret. Math. 25(3), 1319–1321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards the 1–2–3 conjecture. J. Combin. Theory B 100(3), 347–349 (2010)

  27. Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours. J. Combin. Theory B 91, 151–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Majerski, P., Przybyło, J.: On the irregularity strength of dense graphs. SIAM J. Discret. Math. 28(1), 197–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Majerski, P., Przybyło, J.: Total vertex irregularity strength of dense graphs. J. Graph Theory 76(1), 34–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Przybyło, J.: Asymptotic confirmation of the Faudree-Lehel conjecture on irregularity strength for all but extreme degrees. J. Graph Theory 100(1), 189–204 (2022)

    Article  MathSciNet  Google Scholar 

  31. Przybyło, J.: Asymptotically optimal neighbour sum distinguishing colourings of graphs. Rand. Struct. Algoritm. 47, 776–791 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Przybyło, J.: On decomposing graphs of large minimum degree into locally irregular subgraphs. Electron. J. Combin. 23(2), 31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Przybyło, J.: Irregularity strength of regular graphs. Electron. J. Combin. 15(1), 82 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Przybyło, J.: Linear bound on the irregularity strength and the total vertex irregularity strength of graphs. SIAM J. Discret. Math. 23(1), 511–516 (2008)

    Article  MathSciNet  Google Scholar 

  35. Przybyło, J.: The 1–2–3 conjecture almost holds for regular graphs. J. Combin. Theory B 147, 183–200 (2021)

  36. Thomassen, C., Wu, Y., Zhang, C.Q.: The \(3\)-flow conjecture, factors modulo \(k\), and the 1–2–3 conjecture. J. Combin. Theory B 121, 308–325 (2016)

  37. Wong, T., Zhu, X.: Every graph is (2,3)-choosable. Combinatorica 36(1), 121–127 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Alon, N., Wei, F.: Irregular subgraphs. Combin. Probab. Comput. 32(2), 269–283 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kalkowski, M.: A note on 1,2 conjecture. Ph.D Thesis (2009)

  40. Przybyło, J.: A generalisation of Faudree-Lehel conjecture holds almost surely for random graphs. Rand. Struct Algoritm. 61, 383–396 (2022)

    Article  Google Scholar 

  41. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization, 4th edn. Wiley, Hoboken (2016)

  42. Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Rand. Struct. Algorithm. 13(2), 99–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  44. Przybyło, J., Wei, F.: Short proof on the asymptotic confirmation of the Faudree–Lehel conjecture. (2022)

Download references

Funding

Research supported by NSF Award DMS-1953958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przybyło, J., Wei, F. On the Asymptotic Confirmation of the Faudree–Lehel Conjecture for General Graphs. Combinatorica 43, 791–826 (2023). https://doi.org/10.1007/s00493-023-00036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00036-5

Keywords

Mathematics Subject Classification

Navigation