Abstract
Given a simple graph G, the irregularity strength of G, denoted by s(G), is the least positive integer k such that there is a weight assignment on edges \(f: E(G) \rightarrow \{1,2,\dots , k\}\) attributing distinct weighted degrees: \(\tilde{f}(v):= \sum _{u: \{u,v\}\in E(G)} f(\{u,v\})\) to all vertices \(v\in V(G)\). It is straightforward that \(s(G) \ge n/d\) for every d-regular graph G on n vertices with \(d>1\). In 1987, Faudree and Lehel conjectured in turn that there is an absolute constant c such that \(s(G) \le n/d + c\) for all such graphs. Even though the conjecture has remained open in almost all relevant cases, it is more generally believed that there exists a universal constant c such that \(s(G) \le n/{\delta }+ c\) for every graph G on n vertices with minimum degree \({\delta }\ge 1\) which does not contain an isolated edge; In this paper we confirm that the generalized Faudree–Lehel Conjecture holds for graphs with \({\delta }\ge n^\beta \) where \(\beta \) is any fixed constant larger than 0.8; Furthermore, we confirm that the conjecture holds in general asymptotically. That is, we prove that for any \(\varepsilon \in (0,0.25)\) there exist absolute constants \(c_1, c_2\) such that for all graphs G on n vertices with minimum degree \({\delta }\ge 1\) and without isolated edges, \(s(G) \le \frac{n}{{\delta }}(1+\frac{c_1}{{\delta }^{\varepsilon }})+c_2\); We thereby extend in various aspects and strengthen a recent result of Przybyło, who showed that \(s(G) \le \frac{n}{d}\big (1+ \frac{1}{\ln ^{\varepsilon /19}n} \big )=\frac{n}{d}(1+o(1))\) for d-regular graphs with \(d\in [\ln ^{1+\varepsilon } n, n/\ln ^{\varepsilon }n]\). We also improve the earlier general upper bound: \(s(G)< 6\frac{n}{{\delta }}+6\) of Kalkowski, Karoński and Pfender.
This is a preview of subscription content,
to check access.
References
Chartrand, G., Jacobson, M. S., Lehel, J., Oellermann, O. R. Ruiz, S., Saba, F.: Irregular networks, vol. 64, pp. 197–210 (1988). 250th Anniversary Conference on Graph Theory, Fort Wayne (1986)
Alavi, Y., Chartrand, G., Chung, F.R.K., Erdős, P., Graham, R.L., Oellermann, O.R.: Highly irregular graph. J. Graph Theory 11(2), 235–249 (1987)
Alavi, Y., Boals, Y., Chartrand, G., Erdős, P., Oellermann, O.R.: \(k\)-Path irregular graph. Congr. Numer. 65, 201–210 (1988)
Chartrand, G., Erdős, P., Oellermann, O.R.: How to define an irregular graph. Coll. Math. J. 19(1), 36–42 (1988)
Aigner, M., Triesch, E.: Irregular assignments of trees and forests. SIAM J. Discret. Math. 3(4), 439–449 (1990)
Nierhoff, T.: A tight bound on the irregularity strength of graphs. SIAM J. Discret. Math. 13(3), 313–323 (2000)
Faudree, R.J., Lehel, J.: Bound on the irregularity strength of regular graphs. Combin. Colloq. Math. Soc. János Bolyai 52, 247–256 (1988)
Lehel, J.: Facts and quests on degree irregular assignments. In: Graph Theory, Combinatorics, and Applications, vol. 2 (Kalamazoo, MI, 1988). Wiley, New York, pp. 765–781 (1991)
Cuckler, B., Lazebnik, F.: Irregularity strength of dense graphs. J. Graph Theory 58(4), 299–313 (2008)
Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B.A., Thomason, A.: Vertex-colouring edge-weightings. Combinatorica 27(1), 1–12 (2007)
Addario-Berry, L., Aldred, R.E.L., Dalal, K., Reed, B.A.: Vertex colouring edge partitions. J. Combin. Theory Ser. B 94(2), 237–244 (2005)
Amar, D.: Irregularity strength of regular graphs of large degree. Discret. Math. 114, 9–17 (1993)
Anholcer, M., Kalkowski, M., Przybyło, J.: A new upper bound for the total vertex irregularity strength of graphs. Discret. Math. 309(21), 6316–6317 (2009)
Bača, M., Jendroľ, S., Miller, M., Ryan, J.: On irregular total labellings. Discret. Math. 307, 1378–1388 (2007)
Bartnicki, T., Grytczuk, J., Niwczyk, S.: Weight choosability of graphs. J. Graph Theory 60(3), 242–256 (2009)
Bensmail, J., Merker, M., Thomassen, C.: Decomposing graphs into a constant number of locally irregular subgraphs. Eur. J. Combin. 60, 124–134 (2017)
Bohman, T., Kravitz, D.: On the irregularity strength of trees. J. Graph Theory 45, 241–254 (2004)
Cao, L.: Total weight choosability of graphs: Towards the 1-2-3-conjecture. J. Combin. Theory B 149(1–2), 109–146 (2021)
Dinitz, J.H., Garnick, D.K., Gyárfás, A.: On the irregularity strength of the \(m \times n\) grid. J. Graph Theory 16, 355–374 (1992)
Faudree, R.J., Jacobson, M.S., Lehel, J., Schelp, R.: Irregular networks, regular graphs and integer matrices with distinct row and column sums. Discret. Math. 76, 223–240 (1989)
Faudree, R.J., Lehel, J.: Bound on the irregularity strength of regular graphs. Combin. Colloq. Math. Soc. János Bolyai 52, 247–256 (1987)
Ferrara, M., Gould, R.J., Karoński, M., Pfender, F.: An iterative approach to graph irregularity strength. Discret. Appl. Math. 158, 1189–1194 (2010)
Frieze, A., Gould, R.J., Karoński, M., Pfender, F.: On graph irregularity strength. J. Graph Theory 41(2), 120–137 (2002)
Gyárfás, A.: The irregularity strength of \(K_{m, m}\) is \(4\) for odd \(m\). Discret. Math. 71, 273–274 (1998)
Kalkowski, M., Karoński, M., Pfender, F.: A new upper bound for the irregularity strength of graphs. SIAM J. Discret. Math. 25(3), 1319–1321 (2011)
Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards the 1–2–3 conjecture. J. Combin. Theory B 100(3), 347–349 (2010)
Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours. J. Combin. Theory B 91, 151–157 (2004)
Majerski, P., Przybyło, J.: On the irregularity strength of dense graphs. SIAM J. Discret. Math. 28(1), 197–205 (2014)
Majerski, P., Przybyło, J.: Total vertex irregularity strength of dense graphs. J. Graph Theory 76(1), 34–41 (2014)
Przybyło, J.: Asymptotic confirmation of the Faudree-Lehel conjecture on irregularity strength for all but extreme degrees. J. Graph Theory 100(1), 189–204 (2022)
Przybyło, J.: Asymptotically optimal neighbour sum distinguishing colourings of graphs. Rand. Struct. Algoritm. 47, 776–791 (2015)
Przybyło, J.: On decomposing graphs of large minimum degree into locally irregular subgraphs. Electron. J. Combin. 23(2), 31 (2016)
Przybyło, J.: Irregularity strength of regular graphs. Electron. J. Combin. 15(1), 82 (2008)
Przybyło, J.: Linear bound on the irregularity strength and the total vertex irregularity strength of graphs. SIAM J. Discret. Math. 23(1), 511–516 (2008)
Przybyło, J.: The 1–2–3 conjecture almost holds for regular graphs. J. Combin. Theory B 147, 183–200 (2021)
Thomassen, C., Wu, Y., Zhang, C.Q.: The \(3\)-flow conjecture, factors modulo \(k\), and the 1–2–3 conjecture. J. Combin. Theory B 121, 308–325 (2016)
Wong, T., Zhu, X.: Every graph is (2,3)-choosable. Combinatorica 36(1), 121–127 (2016)
Alon, N., Wei, F.: Irregular subgraphs. Combin. Probab. Comput. 32(2), 269–283 (2023)
Kalkowski, M.: A note on 1,2 conjecture. Ph.D Thesis (2009)
Przybyło, J.: A generalisation of Faudree-Lehel conjecture holds almost surely for random graphs. Rand. Struct Algoritm. 61, 383–396 (2022)
Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization, 4th edn. Wiley, Hoboken (2016)
Dubhashi, D., Ranjan, D.: Balls and bins: a study in negative dependence. Rand. Struct. Algorithm. 13(2), 99–124 (1998)
Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer, Berlin (2002)
Przybyło, J., Wei, F.: Short proof on the asymptotic confirmation of the Faudree–Lehel conjecture. (2022)
Funding
Research supported by NSF Award DMS-1953958.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Przybyło, J., Wei, F. On the Asymptotic Confirmation of the Faudree–Lehel Conjecture for General Graphs. Combinatorica 43, 791–826 (2023). https://doi.org/10.1007/s00493-023-00036-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-023-00036-5