Skip to main content

Upper Bounds For Families Without Weak Delta-Systems

Abstract

For \(k\ge 3\), a collection of k sets is said to form a weak \(\Delta \)-system if the intersection of any two sets from the collection has the same size. Erdős and Szemerédi asked about the size of the largest family \(\mathcal {F}\) of subsets of \(\{1,\dots ,n\}\) that does not contain a weak \(\Delta \)-system. In this note we improve upon the best upper bound due to the author and Sawin, and show that

$$\begin{aligned} |\mathcal {F}|\le \left( \frac{2}{3}\Theta (C)+o(1)\right) ^{n} \end{aligned}$$

where \(\Theta (C)\) is the capset capacity. In particular, this shows that

$$\begin{aligned} |\mathcal {F}|\le (1.8367\ldots +o(1))^{n}. \end{aligned}$$

This is a preview of subscription content, access via your institution.

References

  1. Erdős, Paul, Rado, Richard: Intersection theorems for systems of sets. J. London Math. Soc. 35, 85–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chung, L., Fan, R.K.: Open problems of Paul Erdos in graph theory. J. Graph. Theory 25(1), 3–36 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower lemma. Ann. Math. 194(3), 795–815 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rao, A.: Coding for sunflowers. Discret. Anal. 2, 8 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Tao, T.: The sunflower lemma via shannon entropy, (2020). https://terrytao.wordpress.com/2020/07/20/the-sunflower-lemma-via-shannon-entropy

  6. Bell, T., Suchakree, C., Lutz, W.: Note on sunflowers. Discret. Math. 344(7), 112367 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rao, A.: Sunflowers: from soil to oil. Bull. Amer. Math. Soc. (N.S.) 60(1), 29–38 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdos, P., Milner, E.C., Rado, R.: Intersection theorems for systems of sets. J. Austral. Math. Soc. 18, 22–40 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. AV, Kostochka. Extremal problems on \(\Delta \)-systems. In: Numbers, information and complexity (Bielefeld, 1998), pp. 143–150. Kluwer Acad. Publ, Boston (2000)

  10. Erdős, Paul, Szemerédi, Endre: Combinatorial properties of systems of sets. J. Combinatorial Theory Ser. A 24(3), 308–313 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kostochka, Alexandr V., Rödl, Vojtěch: On large systems of sets with no large weak \(\Delta \)-subsystems. Combinatorica 18(2), 235–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rödl, Vojtěch, Thoma, Luboš: On the size of set systems on \([n]\) not containing weak \((r,\Delta )\)-systems. J. Combin. Theory Ser. A 80(1), 166–173 (1997)

  13. Frankl, Peter, Rödl, Vojtěch: Forbidden intersections. Trans. Amer. Math. Soc. 300(1), 259–286 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Naslund, E., Sawin, W.: Upper bounds for sunflower-free sets. Forum Math. Sigma 5, e15 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tao, T.: A symmetric formulation of the croot-lev-pach-ellenberg-gijswijt capset bound, (2016). https://www.terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound

  16. Croot, E., Lev, V.F., Pach, P.P.: Progression-free sets in Zn4 are exponentially small. Ann. Math. 185(1), 331–337 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ellenberg, J.S., Gijswijt, D.: On large subsets of Fnq with no three-term arithmetic progression. Ann. Math. 185(1), 339–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Blasiak, J., Church, T., Cohn, H., Grochow, J.A., Naslund, E., Sawin, W.F., Umans, C.: On cap sets and the group-theoretic approach to matrix multiplication. Discret. Anal. 3, 27 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Kleinberg, R., Speyer, D.E., Sawin, W.: The growth of tri-colored sum-free sets. Discret. Anal. 12, 10 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Pebody, L.: Proof of a conjecture of kleinberg-sawin-speyer. ArXiv e-prints, (2017). arxiv:1608.05740

  21. Christandl M, Fawzi O, Ta H, Zuiddam, J.: Larger corner-free sets from combinatorial degenerations. In 13th Innovations in Theoretical Computer Science Conference

Download references

Acknowledgements

I would like to thank Lisa Sauermann for her many helpful comments, and for pointing out an error in the original version of this paper. I would also like to thank the anonymous referees for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Naslund.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naslund, E. Upper Bounds For Families Without Weak Delta-Systems. Combinatorica 43, 729–735 (2023). https://doi.org/10.1007/s00493-023-00032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00032-9