Skip to main content
Log in

Vertex-Coloring Graphs with 4-Edge-Weightings

Combinatorica Aims and scope Submit manuscript

Cite this article

Abstract

An edge-weighting of a graph is called vertex-coloring if the weighted degrees yield a proper vertex coloring of the graph. It is conjectured that for every graph without isolated edge, a vertex-coloring edge-weighting with the set \(\{1,2,3\}\) exists. In this note, we show that the statement is true for the weight set \(\{1,2,3,4\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colors. J Comb Theory JCT 91, 151–157 (2004)

    Article  MATH  Google Scholar 

  2. Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B., Thomason, A.: Vertex-colouring edge-weightings. Combinatorica 27, 1–12 (2007). https://doi.org/10.1007/s00493-007-0041-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Addario-Berry, L., Dalal, K., Reed, B.: Degree constrained subgraphs. Discrete Appl Math 156(7), 1168–1174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, T., Yu, Q.: On vertex-coloring 13-edge-weighting. Front Math China 3, 581–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards the 1-2-3-conjecture. J Comb Theory Ser B 100(3), 347–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Przybyło, J.: The 1-2-3 conjecture almost holds for regular graphs. J. Comb. Theory Ser. B 147, 183–200 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bensmail, J.: A 1-2-3-4 result for the 1-2-3 conjecture in 5-regular graphs. Discret Appl Math 257, 31–39 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Przybyło, J.: The 1–2-3 conjecture holds for graphs with large enough minimum degree. Combinatorica (2022). https://doi.org/10.1007/s00493-021-4822-0

    Article  MathSciNet  Google Scholar 

  9. Zhong, L.: The 1-2-3-conjecture holds for dense graphs. J Gr Theory 90, 561–564 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dudek, A., Wajc, D.: On the complexity of vertex-coloring edge-weightings. Discret Math Theor Comput Sci 13, 45–50 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Seamone, B.: The 1-2-3 conjecture and related problems: a survey. Cornell University (2012)

    Google Scholar 

  12. Ford, L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Keusch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keusch, R. Vertex-Coloring Graphs with 4-Edge-Weightings. Combinatorica 43, 651–658 (2023). https://doi.org/10.1007/s00493-023-00027-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00027-6

Keywords

Mathematics Subject Classification

Navigation