Skip to main content
Log in

Prague Dimension of Random Graphs

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

The Prague dimension of graphs was introduced by Nešetřil, Pultr and Rödl in the 1970s. Proving a conjecture of Füredi and Kantor, we show that the Prague dimension of the binomial random graph is typically of order \(n/\log n\) for constant edge-probabilities. The main new proof ingredient is a Pippenger–Spencer type edge-coloring result for random hypergraphs with large uniformities, i.e., edges of size \(O(\log n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

Notes

  1. The decision problem of whether \({\text {dim}}_{\textrm{P}}(G) \le k\) holds is also known to be NP-complete for \(k \ge 3\), see [33].

  2. As usual, we say that an event holds whp (with high probability) if it holds with probability tending to 1 as \(n\rightarrow \infty \).

  3. Many deterministic approaches such as [22, 37] first efficiently color most of the edges of \({\mathcal {H}}\) using \({(1+\delta /2)\Delta ({\mathcal {H}})}\) colors, say, so that the remaining uncolored ‘last few edges’ yield a hypergraph with maximum degree at most \({\epsilon \Delta ({\mathcal {H}})}\), say. By choosing the constant \({\epsilon =\epsilon (r,\delta )>0}\) sufficiently small, these ‘last few edges’ can then trivially be colored using \({r\cdot \epsilon \Delta ({\mathcal {H}})} \le {\delta /2 \cdot \Delta ({\mathcal {H}})}\) additional colors, which clearly becomes harder to implement when \(r=r(n) \rightarrow \infty \) (as now the dependence of \(\epsilon \) on r matters).

  4. Heuristically, the form of the upper bound (11) can also be motivated as follows: (7) and \(G_i \approx G_{n,{p_i}}\) loosely suggest \(\text {cc}'(G_{n,p}) \le \sum _{0 \le i \le I}\text {cc}'(G_{n,{p_i}})\), which together with (6) and \(\text {cc}'(G_{n,{p_I}}) \le 2\Delta (G_{n,{p_I}}) = O(np_I)\) makes the first inequality in (11) a natural target bound (the second inequality is more technical, and follows by integral comparison; see Sect. 2.2.1).

  5. To see the claimed bounds in (17), note that \(1/p_i \le 1/p_I \le k^{2\tau }/p \le n^{\sigma /\tau +o(1)}\) and \(p_i^{k_i-1} \ge p_i^{\sigma \log _{1/p_i} n} = n^{-\sigma }\).

  6. In fact, inequality (29) holds with probability at least \(1-n^{-\omega (1)}\), since each of the \(O(I \cdot n) = n^{O(1)}\) many events considered fails with probability at most \(n^{-\omega (1)}\). A similar remark applies to inequality (34) in Sect. 2.2.2.

  7. We consider the auxiliary hypergraph \({\mathcal {H}}\), where the vertices correspond to the edges of \(G_{n,p}\) and the edges correspond to the edge-sets of the cliques \(K_s\) of \(G_{n,p}\). The technical conditions of [23, Theorem 7.1] required for mimicking [23, Section 7] can then be verified using (careful applications of) standard tail bounds such as Lemma 11 and [46, Theorems 30 and 32].

  8. For the same auxiliary hypergraph \({\mathcal {H}}\) as considered before, the required technical conditions of [11, Theorem 1.2] with \(\Delta \approx \left( {\begin{array}{c}n-2\\ s-2\end{array}}\right) p^{\left( {\begin{array}{c}s\\ 2\end{array}}\right) -1} \ge \Omega \bigl ((\log n)^{\omega (1)}\bigr )\) and \(\log e({\mathcal {H}}) \le s \log n \ll \Delta ^{\Theta (1)}\) can be verified using Lemma 11 and [40, Theorem 1].

References

  1. Alon, N.: Covering graphs by the minimum number of equivalence relations. Combinatorica 6, 201–206 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Alweiss, R.: On the product dimension of clique factors. Eur. J. Combin. 86, 103097 10 (2020)

  3. Bohman, T.: The triangle-free process. Adv. Math. 221, 1653–1677 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohman, T., Warnke, L.: Large girth approximate steiner triple systems. J. Lond. Math. Soc. 100, 895–913 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B., Erdős, P., Spencer, J., West, D.: Clique coverings of the edges of a random graph. Combinatorica 13, 1–5 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Caen, D.: Extremal clique coverings of complementary graphs. Combinatorica 6, 309–314 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavers, M., Verstraëte, J.: Clique partitions of complements of forests and bounded degree graphs. Discrete Math. 308, 2011–2017 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conlon, D., Fox, J., Sudakov, B.: Short proofs of some extremal results. Combin. Probab. Comput. 23, 8–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cygan, M., Pilipczuk, M., Pilipczuk, M.: Known algorithms for edge clique cover are probably optimal. SIAM J. Comput. 45, 67–83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eaton, N., Rödl, V.: Graphs of small dimensions. Combinatorica 16, 59–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehard, S., Glock, S., Joos, F.: Pseudorandom hypergraph matchings. Combin. Probab. Comput. 29, 868–885 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős, P., Faudree, R., Ordman, E.: Clique partitions and clique coverings. Discrete Math. 72, 93–101 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdős, P., Goodman, A., Pósa, L.: The representation of a graph by set intersections. Can. J. Math. 18, 106–112 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdős, P., Ordman, E., Zalcstein, Y.: Clique partitions of chordal graphs. Combin. Probab. Comput. 2, 409–415 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freedman, D.: On tail probabilities for martingales. Ann. Probab. 3, 100–118 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frieze, A., Reed, B.: Covering the edges of a random graph by cliques. Combinatorica 15, 489–497 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Füredi, Z.: On the Prague dimension of Kneser graphs. In: Numbers. Information and Complexity (Bielefeld, 1998), pp. 143–150. Kluwer Acad. Publ, Boston (2000)

  18. Füredi, Z., Kantor, I.: Kneser ranks of random graphs and minimum difference representations. SIAM J. Discrete Math. 32, 1016–1028 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, H., Warnke, L.: Packing nearly optimal Ramsey \({R}(3, t)\) graphs. Combinatorica 40, 63–103 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  21. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  22. Kahn, J.: Asymptotically good list-colorings. J. Combin. Theory Ser. A 73, 1–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kahn, J., Park,J.: Tuza’s conjecture for random graphs. Rand. Struct. Algor. To appear. arXiv:2007.04351

  24. Kahn, J., Steger, A., Sudakov, B.: Combinatorics. Oberwolfach Rep. 14, 5–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kantor, I.: Graphs, codes, and colorings. PhD thesis, University of Illinois at Urbana-Champaign (2010). Available at http://hdl.handle.net/2142/18247

  26. Körner, J., Marton, K.: Relative capacity and dimension of graphs. Discrete Math. 235, 307–315 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Körner, J., Orlitsky, A.: Zero-error information theory. IEEE Trans. Inform. Theory 44, 2207–2229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kou, L., Stockmeyer, L., Wong, C.: Covering edges by cliques with regard to keyword conflicts and intersection graphs. Comm. ACM 21, 135–139 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kurauskas, V., Rybarczyk, K.: On the chromatic index of random uniform hypergraphs. SIAM J. Discrete Math. 29, 541–558 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lovász, L., Nešetřil, J., Pultr, A.: On a product dimension of graphs. J. Combin. Theory Ser. B 29, 47–67 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. McDiarmid, C.: Concentration. In: Probabilistic methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer, Berlin (1998)

  32. Molloy, M., Reed, B.: Near-optimal list colorings. Rand. Struct. Algor. 17, 376–402 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nešetřil, J., Pultr, A.: A Dushnik-Miller type dimension of graphs and its complexity. In Fundamentals of Computation Theory (Proc. Internat. Conf., Poznań-Kórnik, 1977), pp. 482–493. Springer, Berlin (1977)

  34. Nešetřil, J., Rödl, V.: A simple proof of the Galvin-Ramsey property of the class of all finite graphs and a dimension of a graph. Discrete Math. 23, 49–55 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nešetřil, J., Rödl, V.: Products of graphs and their applications. In: Graph Theory (Łagów, 1981), pp. 151–160. Springer, Berlin (1983)

  36. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indag. Math. 80, 406–424 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pippenger, N., Spencer, J.: Asymptotic behavior of the chromatic index for hypergraphs. J. Combin. Theory Ser. A 51, 24–42 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Poljak, S., Rödl, V., Turzík, D.: Complexity of representation of graphs by set systems. Discrete Appl. Math. 3, 301–312 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Roberts, F.: Applications of edge coverings by cliques. Discrete Appl. Math. 10, 93–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Šileikis, M., Warnke, L.: Counting extensions revisited. Rand. Struct. Algor. To Appear. arXiv:1911.03012

  41. Skums, P., Bunimovich, L.: Graph fractal dimension and structure of fractal networks: a combinatorial perspective. J. Complex Netw. 8(4), cnaa037 (2020)

  42. Wallis, W.: Asymptotic values of clique partition numbers. Combinatorica 2, 99–101 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Warnke, L.: On the method of typical bounded differences. Combin. Probab. Comput. 25, 269–299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Warnke, L.: Upper tails for arithmetic progressions in random subsets. Israel J. Math. 221, 317–365 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Warnke, L.: On Wormald’s differential equation method. Combin. Probab. Comput. To Appear. arXiv:1905.08928

  46. Warnke, L.: On the missing log in upper tail estimates. J. Combin. Theory Ser. B 140, 98–146 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. West, D.: Introduction to Graph Theory. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  48. Wormald, N.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Annika Heckel for valuable discussions about Problem 1. We are also grateful to the anonymous referees for useful suggestions concerning the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Warnke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSF grant DMS-1703516, NSF CAREER grant DMS-2225631, and a Sloan Research Fellowship.

Appendices

A Lower bounds: proof of Lemma 20

Proof of Lemma 20

Writing \({\mathcal {S}}\) for the event that the largest clique of \(G_{n,p}\) has size at most \(s=\lceil 2\log _{1/p} n\rceil \), it well-known that \({\mathcal {S}}\) holds whp (by a straightforward first moment argument). Writing \({\mathcal {E}}\) for the event that \(G_{n,p}\) contains \((1\pm \epsilon )\left( {\begin{array}{c}n\\ 2\end{array}}\right) p\) edges for \(\epsilon :=n^{-1/2}\), say, it is easy to see that \({\mathcal {E}}\) holds whp (using Chebychev’s inequality). Furthermore, recalling \(\varphi (p)={(1-p)\log (1-p)/(p\log p)}\), the probability that \(G_{n,p}\) equals any fixed spanning subgraph \(G \subseteq K_n\) with \(e(G) = (1\pm \epsilon )\left( {\begin{array}{c}n\\ 2\end{array}}\right) p\) edges is routinely seen to be at most

$$\begin{aligned} \begin{aligned} \Pi&:= \max _{m \in (1\pm \epsilon )\left( {\begin{array}{c}n\\ 2\end{array}}\right) p} p^m (1-p)^{\left( {\begin{array}{c}n\\ 2\end{array}}\right) -m} \\&= \max _{m \in (1\pm \epsilon )\left( {\begin{array}{c}n\\ 2\end{array}}\right) p} \exp \biggl ( -\genfrac(){0.0pt}1{n}{2}p \biggl [\frac{m}{\genfrac(){0.0pt}1{n}{2}p} + \biggl (1-\frac{m}{\genfrac(){0.0pt}1{n}{2}}\biggr )\frac{\log (1-p)}{p\log p}\biggr ] \! \cdot \! \log (1/p)\biggr )\\&\le \exp \biggl ( -\genfrac(){0.0pt}1{n}{2}p \biggl [1-\epsilon + \biggl (1-\frac{\epsilon p}{1-p}\biggr )\varphi (p)\biggr ] \! \cdot \! \log (1/p)\biggr )\\&\le \exp \Bigl (-(1-o(1)) \! \cdot \! \genfrac(){0.0pt}1{n}{2}p \bigl (1+\varphi (p)\bigr ) \! \cdot \! \log (1/p)\Bigr ), \end{aligned} \end{aligned}$$
(77)

where we used \(\varphi (p) \ge 0\) as well as \(\epsilon =o(1)\) and \(\epsilon p/(1-p)=o(1)\) for the last inequality.

For the clique covering number \(\text {cc}(G_{n,p})\), the crux is that there are at most

$$\begin{aligned} \left( {\begin{array}{c}n+s\\ s\end{array}}\right) ^T \, \le \, o(n^{sT}) \end{aligned}$$

many collections \(\{C_1, \ldots , C_t\}\) with \(t \le T\) that are a clique covering for some graph \(G \subseteq K_n\) with largest clique of size at most s. Hence, since each clique covering uniquely determines the entire edge-set and thus the underlying spanning subgraph \(G \subseteq K_n\), it follows by a union bound argument that

$$\begin{aligned} {{\mathbb {P}}{}}(\text {cc}(G_{n,p}) \le T) \; \le \; {{\mathbb {P}}{}}(\lnot {\mathcal {S}}\text { or } \lnot {\mathcal {E}}) \, + \, o(n^{sT}) \cdot \Pi . \end{aligned}$$
(78)

Note that \({{\mathbb {P}}{}}(\lnot {\mathcal {S}}\text { or } \lnot {\mathcal {E}})=o(1)\) and \(s\log n \sim \left( {\begin{array}{c}s\\ 2\end{array}}\right) \cdot \log (1/p)\). In view of inequality (77), for any \(\epsilon \in (0,1)\) it follows that (78) is at most o(1) when \(T \le (1-\epsilon ) \cdot (1+\varphi (p)) \left( {\begin{array}{c}n\\ 2\end{array}}\right) p/\left( {\begin{array}{c}s\\ 2\end{array}}\right) \), establishing (75).

Turning to the thickness \(\text {cc}_{\Delta }(G_{n,p})\), we associate each clique covering \({\mathcal {C}}\) of some graph \(G \subseteq K_n\) with an auxiliary bipartite graph \({\mathcal {B}}\) on vertex-set \({[n] \cup {\mathcal {C}}}\), where \({v \in [n]}\) and \({C_i \in {\mathcal {C}}}\) are connected by an edge whenever \({v \in V(C_i)}\). If the thickness of \({\mathcal {C}}\) is at most T, then in \({\mathcal {B}}\) the degree of each \(v \in [n]\) is at most \(\lfloor T\rfloor \), which also gives \({|{\mathcal {C}}| \le n \lfloor T\rfloor }\). Since the structure of the auxiliary bipartite graph \({\mathcal {B}}\) uniquely determines \({\mathcal {C}}\) (as the neighbors of \(C_i\) in \({\mathcal {B}}\) determine the clique vertex-set \(V(C_i)\)), it follows that there are at most

$$\begin{aligned} \left( {\begin{array}{c}n\lfloor T\rfloor + \lfloor T\rfloor \\ \lfloor T\rfloor \end{array}}\right) ^n \, \le \, O\bigl ((6n)^{nT}\bigr ) \end{aligned}$$

many collections \({\mathcal {C}}\) with thickness at most T that are a clique covering of some graph \(G \subseteq K_n\). Since each such \({\mathcal {C}}\) uniquely determines the underlying spanning subgraph \(G \subseteq K_n\), we obtain similarly to (78) that

$$\begin{aligned} {{\mathbb {P}}{}}(\text {cc}_{\Delta }(G_{n,p}) \le T) \; \le \; {{\mathbb {P}}{}}(\lnot {\mathcal {E}}) \, + \, O\bigl ((6n)^{nT}\bigr ) \cdot \Pi . \end{aligned}$$
(79)

Note that \({{\mathbb {P}}{}}(\lnot {\mathcal {E}})=o(1)\) and \(n \log (6n) \sim \left( {\begin{array}{c}n\\ 2\end{array}}\right) \log (1/p) \cdot (s-1)/n\). In view of inequality (77), for any \(\epsilon \in (0,1)\) it follows that (79) is at most o(1) when \(T \le (1-\epsilon ) \cdot (1+\varphi (p)) np/(s-1)\), completing the proof of (76). \(\square \)

B Variant of Theorem 2: proof of Corollary 10

Proof of Corollary 10

Choosing \(\xi =\xi (\delta ) \in (0,1/16]\) such that \((1+\delta )(1+\xi )/(1-4\xi )^2 \le 1+2\delta \), set \({m_0:= \lfloor (1+\xi )m\rfloor }\), \({m_1:= \lfloor m_0/(1-4\xi )^2\rfloor }\), and \({c:= (1+\delta )r m_1/n}\). Let \({\mathcal {H}}_{i}^*\) be chosen uniformly at random from all \(\left( {\begin{array}{c}|E({\mathcal {H}})|\\ i\end{array}}\right) \) subhypergraphs of \({\mathcal {H}}\) with exactly i edges. Since \({\mathcal {H}}_q\) conditioned on having exactly i edges has the same distribution as \({\mathcal {H}}_i^*\), by the law of total probability and monotonicity it follows that

$$\begin{aligned} \begin{aligned} {{\mathbb {P}}{}}(\chi '({\mathcal {H}}_q) \ge c)&\, \le \, {{\mathbb {P}}{}}(|E({\mathcal {H}}_q)| > m_0) + \sum _{0 \le i \le m_0}{{\mathbb {P}}{}}(\chi '({\mathcal {H}}_i^*) \ge c){{\mathbb {P}}{}}(|E({\mathcal {H}}_q)| = i) \\&\, \le \, n^{-\omega (r)} + {{\mathbb {P}}{}}(\chi '({\mathcal {H}}_{m_0}^*) \ge c), \end{aligned} \end{aligned}$$
(80)

where we used standard Chernoff bounds (such as [21, Theorem 2.1]) and \({{\mathbb {E}}{}}|E({\mathcal {H}}_q)| = |E({\mathcal {H}})|q = m \ge n^{1+\sigma } \gg r \log n\). Sequentially choosing the random edges \(e_1, \ldots , e_{m_1} \in E({\mathcal {H}})\) of \({\mathcal {H}}_{m_1}\) as defined in Theorem 2, note that \(e_{i+1} \in {E({\mathcal {H}}) {\setminus } \{e_1, \ldots , e_i\}}\) holds with probability at least \({1-m_1/e({\mathcal {H}}) > 1-4\xi }\), as \(m_1 < 4 m \le 4\xi e({\mathcal {H}})\). Since we can equivalently construct the edge-set \(\{f_1, \ldots , f_{m_0}\}\) of \({\mathcal {H}}^*_{m_0}\) by sequentially choosing \(f_{i+1} \in {E({\mathcal {H}}) {\setminus } \{f_1, \ldots , f_i\}}\) uniformly at random, a natural coupling of \({\mathcal {H}}_{m_1}\) and \({\mathcal {H}}^*_{m_0}\) thus satisfies

$$\begin{aligned} \begin{aligned} {{\mathbb {P}}{}}({\mathcal {H}}_{m_0}^* \subseteq {\mathcal {H}}_{m_1}) \, \ge \, {{\mathbb {P}}{}}({\text {Bin}}(m_1,1-4\xi ) \ge m_0) \, \ge \, 1- n^{-\omega (r)}, \end{aligned} \end{aligned}$$

where we used standard Chernoff bounds and that \(m_1 (1-4\xi ) > m_0/(1-\xi )\) for \(n \ge n_0(\xi )\). Hence

$$\begin{aligned} {{\mathbb {P}}{}}(\chi '({\mathcal {H}}_{m_0}^*) \ge c) \, \le \, {{\mathbb {P}}{}}(\chi '({\mathcal {H}}_{m_1}) \ge c) + n^{-\omega (r)} \, \le \, n^{-\omega (r)} , \end{aligned}$$
(81)

where we invoked Theorem 2 with m set to \(m_1\) (which applies since \({n^{1+\sigma } \le m} \le m_1< {4 \xi e({\mathcal {H}}) < n^r}\)). This completes the proof by combining (80) and (81) with \(c \le (1+2\delta )rm/n\). \(\square \)

C Heuristics: random greedy edge coloring algorithm

In this appendix we give, for the greedy coloring algorithm from Sect. 3, two heuristic explanations for the trajectories \(|Q_{e}(i)| \approx {\hat{q}}(t)\) and \(|Y_{v,c}(i)| \approx {\hat{y}}(t)\) that these random variables follow, where \({t = t(i,m) = i /m}\).

For our first pseudo-random heuristic, we write \(E_i=\{e_1, \ldots , e_i\}\) for the multi-set of edges appearing during the first i steps of the algorithm. Ignoring that edges can appear multiple times, our pseudo-random ansatz is that the edges in \(E_i\) and their assigned colors are approximately independent with

$$\begin{aligned} {{\mathbb {P}}{}}\bigl (\text {e in} E_i\, \text {and colored}\,c\bigr ) \approx \frac{|E_i|}{|E({\mathcal {H}})|} \cdot \frac{1}{q} \approx \frac{i}{nD/r} \cdot \frac{1}{rm/n} = \frac{t}{D} =: p(t,D) = p, \end{aligned}$$

where independence only holds with respect to colorings that are proper, i.e., possible in the algorithm. Using this heuristic ansatz, we now consider the event \({\mathcal {E}}_{v,c}\) that no edge \(f \in E_i\) with \(v \in f\) is colored c. Exploiting that no two distinct edges containing v can receive the same color in the algorithm (since this coloring would not be proper), our pseudo-random ansatz and the degree assumption (2) then suggests that

$$\begin{aligned} {{\mathbb {P}}{}}(\lnot {\mathcal {E}}_{v,c}) = \sum _{f \in E({\mathcal {H}}): v \in f} \hspace{-0.25em} {{\mathbb {P}}{}}(f \hbox {in}\, E_i\, \text {and colored}~c) \approx D \cdot p = t. \end{aligned}$$

Since for every pair of vertices there are only at most \(n^{-\sigma }D\) edges containing both (by the codegree assumption), for \(\ell = o(\log n)\) distinct vertices \(v_{1},\ldots ,v_{\ell }\) our pseudo-random ansatz also loosely suggests that

$$\begin{aligned} {{\mathbb {P}}{}}\Bigl ( \bigcap _{i \in [\ell ]}{\mathcal {E}}_{v_i,c}\Bigr ) \approx \prod _{i \in [\ell ]}{{\mathbb {P}}{}}({\mathcal {E}}_{v_i,c}) + O\bigl (\ell ^2 \cdot n^{-\sigma }D \cdot p\bigr )\approx (1-t)^\ell . \end{aligned}$$

Recalling (46) from Sect. 3, using linearity of expectation we then anticipate \(|Q_{e}(i)| \approx {\hat{q}}(t)\) based on

$$\begin{aligned} {{\mathbb {E}}{}}|Q_{e}(i)| = \sum _{c \in [q]}{{\mathbb {P}}{}}\bigl (c \in Q_{e}(i)\bigr ) = \sum _{c \in [q]}{{\mathbb {P}}{}}\Bigl ( \bigcap _{v \in e}{\mathcal {E}}_{v,c}\Bigr ) \approx q \cdot (1-t)^r= {\hat{q}}(t). \end{aligned}$$

Mimicking this reasoning, recalling (47) we similarly anticipate \(|Y_{v,c}(i)| \approx {\hat{y}}(t)\) based on

$$\begin{aligned} {{\mathbb {E}}{}}|Y_{v,c}(i)| = \sum _{f \in E({\mathcal {H}}): v \in f} \hspace{-0.25em} {{\mathbb {P}}{}}\bigl (c \in Q_{f \setminus \{v\}}(i)\bigr ) \approx D \cdot (1-t)^{r-1} = {\hat{y}}(t). \end{aligned}$$

In our second expected one-step changes heuristic we assume for simplicity that there are deterministic approximations \(|Q_{e}(i)| \approx f(t) q\) and \(|Y_{v,c}(i)| \approx g(t) D\). Using these approximations and \(q \approx rm/n\), the calculations leading to (55)–(56) and (58)–(59) in Sect. 3.2.1 then suggest that

$$\begin{aligned} {{\mathbb {E}}{}}\bigl (|Q_{e}(i+1)|-|Q_{e}(i)| \, \big | \, {\mathcal {F}}_i\bigr )&\approx - \frac{f(t) q \cdot r\cdot g(t)D}{nD/r\cdot f(t) q} \approx -\frac{rg(t)q}{m} , \end{aligned}$$
(82)
$$\begin{aligned} {{\mathbb {E}}{}}\bigl (|Y_{v,c}(i+1)|-|Y_{v,c}(i)| \, \big | \, {\mathcal {F}}_i\bigr )&\approx - \frac{g(t)D \cdot (r-1) \cdot g(t)D}{nD/r\cdot f(t) q} \approx -\frac{(r-1)g^2(t)D}{f(t) m} , \end{aligned}$$
(83)

where \({\mathcal {F}}_i\) denotes the natural filtration of the algorithm after i steps. Since the left-hand sides of (82)–(83) are approximately equal to \([f(t+1/m)-f(t)]q \approx f'(t)q/m\) and \(g'(t)D/m\), respectively, we anticipate

$$\begin{aligned} f'(t) = -rg(t) \quad \text { and } \quad g'(t) = -(r-1) g^2(t)/f(t). \end{aligned}$$
(84)

Noting \(|Q_{e}(0)| = q\) and \(|Y_{v,c}(0)| \approx D\), we also anticipate \(f(0)=g(0)=1\). The solutions \({f(t)=(1-t)^r}\) and \({g(t)=(1-t)^{r-1}}\) then make \(|Q_{e}(i)| \approx f(t) q = {\hat{q}}(t)\) and \(|Y_{v,c}(i)| \approx g(t) D = {\hat{y}}(t)\) plausible.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Patton, K. & Warnke, L. Prague Dimension of Random Graphs. Combinatorica 43, 853–884 (2023). https://doi.org/10.1007/s00493-023-00016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00016-9

Keywords

Mathematics Subject Classification

Navigation