Abstract
We show that for any finite set A and an arbitrary \(\varepsilon >0\) there exists \(k=k(\varepsilon )\) such that the higher energy \(\textsf{E} _k(A)\) is at most \(|A|^{k+\varepsilon }\) unless A has a very specific structure. As an application we obtain that any finite subset A of the real numbers or the prime field either contains an additive Sidon-type subset of size \(|A|^{1/2+c}\) or a multiplicative Sidon-type subset of size \(|A|^{1/2+c}\).
This is a preview of subscription content,
to check access.References
Alon, N., Erdős, P.: An application of graph theory to additive number theory. Eur. J. Comb. 6(3), 201–203 (1985)
Brown, W.G.: On graphs that do not contain a Thomsen graph. Can. Math. Bull. 9(3), 281–285 (1966)
Cilleruelo, J.: Gaps in dense Sidon sets, Integers: Paper-A11 (2000)
Cilleruelo, J., Ruzsa, I.Z., Vinuesa, C.: Generalized Sidon sets. Adv. Math. 225(5), 2786–2807 (2010)
Dubickas, A., Schoen, T., Silva, M., Sarka, P.: Finding large co-Sidon subsets in sets with a given additive energy. Eur. J. Comb. 34(7), 1144–1157 (2013)
Erdős, P.: Extremal problems in number theory, combinatorics and geometry, Proc. Inter. Congress in Warsaw (1983)
Erdős, P., Harzheim, E.: Congruent subsets of infinite sets of natural numbers. J. Reine Angew. Math. 367, 207–214 (1986)
Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. J. Lond. Math. Soc. 16(4), 212–215 (1941)
Füredi, Z., Simonovits, M.: The History of Degenerate (Bipartite) Extremal Graph Problems, pp. 169–264. Erdős Centennial. Springer, Berlin, Heidelberg (2013)
Green, B.: The number of squares and \(B_h[g]\) sets. Acta Arith. 100(4), 365–390 (2001)
https://pohoatza.wordpress.com/2021/01/23/sidon-sets-and-sum-product-phenomena/
Komlós, J., Sulyok, M., Szemerédi, E.: Linear problems in combinatorial number theory. Acta Mathematica Academiae Scientiarum Hungarica 26(1–2), 113–121 (1975)
Linström, B.: \(B_h[g]\)-sequences from \(B_h\)-sequences. Proc. Am. Math. Soc. 128, 657–659 (2000)
Linström, B.: An inequality for \(B_2\)-sequences. J. Comb. Theory 6(2), 211–212 (1969)
Murphy, B.: Upper and lower bounds for rich lines in grids. http://arxiv.org/abs/1709.10438v1 (2017)
Nathanson, M.B.: Every function is the representation function of an additive basis for the integers. Portugaliae Mathematica. Nova Série 62(1), 55–72 (2005)
O’Bryant, K.: A complete annotated bibliography of work related to Sidon sequences. Electron. J. Combin. Dynamic Surveys, Paper No. DS11, p. 39. http://arxiv.org/abs/math/0407117 (2004)
Peng, X., Tesoro, R., Timmons, C.: Bounds for generalized Sidon sets. Discret. Math. 338(3), 183–190 (2015)
Roche–Newton, O., Warren, A.: Additive and multiplicative Sidon sets. http://arxiv.org/2103.13066
Ruzsa, I.Z.: An infinite Sidon sequence. J. Number Theory 68(1), 63–71 (1998)
Schoen, T., Shkredov, I.D.: Higher moments of convolutions. J. Number Theory 133(5), 1693–1737 (2013)
Semchankau, A.S.: Maximal subsets free of arithmetic progressions in arbitrary sets. Math. Notes 102(3), 396–402 (2017)
Shkredov, I.D.: Energies and structure of additive sets. Electron. J. Comb. 21, 3 (2014)
Shkredov, I.D.: Some remarks on the Balog-Wooley decomposition theorem and quantities \(D^+\), \(D^\times \). Proc. Steklov Inst. Math. 298(1), 74–90 (2017)
Shkredov, I.D.: Modular hyperbolas and bilinear forms of Kloosterman sums. J. Number Theory 220, 182–211 (2021)
Sidon, S.: Ein Satz über trigonometrische Polynome und seine Anwendungen in der Theorie der Fourier-Reihen. Math. Annalen 106, 536–539 (1932)
Tao, T., Vu, V.: Additive Combinatorics. Cambridge University Press, Cambridge (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is supported by the Russian Science Foundation under Grant 19–11–00001, https://rscf.ru/pro ject/19-11-00001.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shkredov, I.D. On an Application of Higher Energies to Sidon Sets. Combinatorica 43, 329–345 (2023). https://doi.org/10.1007/s00493-023-00013-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-023-00013-y