Skip to main content
Log in

Sunflowers in Set Systems of Bounded Dimension

Combinatorica Aims and scope Submit manuscript

Cite this article

Abstract

Given a family \({\mathcal {F}}\) of k-element sets, \(S_1,\ldots ,S_r\in {\mathcal {F}}\) form an r-sunflower if \(S_i \cap S_j =S_{i'} \cap S_{j'}\) for all \(i \ne j\) and \(i' \ne j'\). According to a famous conjecture of Erdős and Rado (JAMA 35: 85–90, 1960), there is a constant \(c=c(r)\) such that if \(|{\mathcal {F}}|\ge c^k\), then \({\mathcal {F}}\) contains an r-sunflower. We come close to proving this conjecture for families of bounded Vapnik-Chervonenkis dimension, \(\text {VC-dim}({\mathcal {F}})\le d\). In this case, we show that r-sunflowers exist under the slightly stronger assumption \(|{\mathcal {F}}|\ge 2^{10k(dr)^{2\log ^{*} k}}\). Here, \(\log ^*\) denotes the iterated logarithm function. We also verify the Erdős-Rado conjecture for families \({\mathcal {F}}\) of bounded Littlestone dimension and for some geometrically defined set systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abbott, H.L., Hanson, D., Sauer, N.: Intersection theorems for systems of sets. J. Combin. Theory Ser. A 12, 381–389 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs, in: Theory and Practice of Combinatorics 60, Ann. Discrete Math., North-Holland Math. Stud. 12, North-Holland, Amsterdam, pp. 9–12 (1982)

  3. Alon, N., Holzman, R.: Near-sunflowers and focal families. Israel J. Math. (2020). https://doi.org/10.48550/arXiv.2010.05992

  4. Alon, N., Livni, R., Malliaris, M., Moran, S.: Private PAC learning implies finite Littlestone dimension, Proc. STOC, pp. 852–860 (2019)

  5. Alweiss, R., Lovett, S., Wu, K., Zhang, J.: Improved bounds for the sunflower lemma. Ann. Math. 194, 795–815 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Axenovich, M., Fon-Der-Flaass, D., Kostochka, A.: On set systems without weak 3-\(\Delta \)-subsystems. Discrete Math. 138, 57–62 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-David, S., Pál, D., Shalev-Shwartz, S.: Agnostic online learning, in COLT, (2009)

  8. Buzaglo, S., Holzman, R., Pinchasi, R.: On \(s\)-intersecting curves and related problems, Symposium on Computational Geometry, pp. 79–84 (2008)

  9. Chase, H., Freitag, J.: Model theory and machine learning. Bull. Symb. Log. 25, 319–332 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clarkson, K.L.: Applications of random sampling in computational geometry, II, Symposium on Computational Geometry, pp. 1–11 (1988)

  11. Deza, M., Frankl, P.: Every large set of equidistant \((0,+1,-1)\)-vectors forms a sunflower. Combinatorica 1, 225–231 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, G., Seymour, P., Winkler, P.: Bounding the vertex cover number of a hypergraph. Combinatorica 14, 23–34 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. Lond. Math. Soc. 35, 85–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdős, P., Szemerédi, E.: Combinatorial properties of systems of sets. J. Combin. Theory Ser. A 24, 308–313 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fox, J., Pach, J., Suk, A.: Erdős-Hajnal conjecture for graphs with bounded VC-dimension. Discrete Comput. Geom. 61, 809–829 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fox, J., Pach, J., Suk, A.: Bounded VC-dimension implies the Schur-Erdős conjecture, Symposium on Computational Geometry, pp. 46:1–46:8 (2020)

  17. Frankl, P.: On the trace of finite sets. J. Combin. Theory Ser. A 34, 41–45 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kostochka, A.V.: An intersection theorem for systems of sets. Random Struct. Algorithms 9, 213–221 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Mach. Learn. 2, 285–318 (1987)

    Article  Google Scholar 

  20. Naslund, E., Sawin, W.: Upper bounds for sunflower-free sets, Forum Math. Sigma 5 (2017), Paper No. e15

  21. Pach, J., Agarwal, P.: Combinatorial geometry. Wiley-Interscience, New York (1995)

    Book  MATH  Google Scholar 

  22. Rao, A.: Coding for sunflowers, Discrete Anal. (2020) Paper No. 2

  23. Sauer, N.: On the density of families of sets. J. Combinat. Theory Ser. A 13, 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharir, M.: On \(k\)-sets in arrangements of curves and surfaces. Discrete Comput. Geom. 6, 593–617 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shelah, S.: A combinatorial problem, stability and order for models and theories in infinitary languages. Pacific J. Math. 41, 247–261 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shelah, S.: Classification theory and the number of non-isomorphic models. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  27. Smorodinsky, S., Sharir, M.: Selecting points that are heavily covered by pseudo-circles, spheres or rectangles. Combin. Probab. Comput. 13, 389–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Spencer, J.: Intersection theorems for systems of sets. Canad. Math. Bull. 20, 249–254 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Amir Yehudayoff for suggesting working with the Littlestone dimension, and the SoCG 2021 referees for helpful comments.

Funding

Fox: Supported by a Packard Fellowship and by NSF Awards DMS-1800053 and DMS-2154169. Pach: Supported by NKFIH Grant Nos. K-131529, KKP-133864, Austrian Science Fund Z 342-N31, Ministry of Education and Science of the Russian Federation Mega Grant No. 075-15-2019-1926, ERC Advanced Grant “GeoScape.” Suk: Supported an NSF CAREER award, NSF award DMS-1952786, and an Alfred Sloan Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Suk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, J., Pach, J. & Suk, A. Sunflowers in Set Systems of Bounded Dimension. Combinatorica 43, 187–202 (2023). https://doi.org/10.1007/s00493-023-00012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00012-z

Keywords

Mathematics Subject Classification

Navigation