Skip to main content
Log in

Strongest Transformations

Combinatorica Aims and scope Submit manuscript

Cite this article

Abstract

We continue our study of maps which transform high-dimensional complicated objects into squares of stationary sets. Previously, we proved that many such transformations exist in \(\textsf {ZFC} \). Here we address the consistency of the strongest conceivable transformations. Along the way, we obtain new results on Shelah’s coloring principle \({{\,\textrm{Pr}\,}}_1\): For \(\kappa \) inaccessible, we prove the consistency of \({{\,\textrm{Pr}\,}}_1(\kappa ,\kappa ,\kappa ,\kappa )\). For successors of regulars, we obtain a full lifting of Galvin’s 1980 theorem. In contrast, the full lifting of Galvin’s theorem to successors of singulars is shown to be inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. The definition of the cardinal characteristic \(\chi (\kappa )\) is reproduced in Definition 3.19 below.

  2. Recall Convention 2.1.

  3. \(\chi (\kappa )\) should be understood as a measure of how far \(\kappa \) is from being weakly compact. By [28, Theorem 6.3;.5] if \(\kappa \) is weakly compact, then \(\chi (\textbf{C})=1\) for every C-sequence \(\textbf{C}\) over \(\kappa \).

  4. Recall that by Propositions 2.10 and 2.11, this only makes sense for \(\kappa \) a limit cardinal.

  5. Here, \(\mu ^+\) stands for the successor of \(\mu \) in the generic extension.

References

  1. Ari Meir Brodsky and Assaf Rinot: A microscopic approach to Souslin-tree constructions. Part I. Ann. Pure Appl. Logic 168(11), 1949–2007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björ Jensen, R.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308 (1972). (erratum, ibid. 4 (1972), 443, 1972. With a section by Jack Silver)

    Article  MathSciNet  Google Scholar 

  3. Brodsky, A.M., Rinot, A.: Distributive Aronszajn trees. Fund. Math. 245(3), 217–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brodsky, A.M., Rinot, A.: More notions of forcing add a Souslin tree. Notre Dame. J. Form. Log. 60(3), 437–455 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Brodsky, A., Rinot, A.: A microscopic approach to Souslin-tree constructions. Part II. Ann. Pure Appl. Logic. 172, 102904 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broverman, S., Ginsburg, J., Kunen, K., Tall, F.D.: Topologies determined by -ideals on \(\omega _{1}\). Can. J. Math. 30(6), 1306–1312 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Erdős, P., Hajnal, A., Rado, R.: Partition relations for cardinal numbers. Acta Math. Acad. Sci. Hungar. 16, 93–196 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernandez-Breton, D., Rinot, A.: Strong failures of higher analogs of Hindman’s theorem. Trans. Am. Math. Soc. 369(12), 8939–8966 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galvin, F.: Chain conditions and products. Fund. Math. 108(1), 33–48 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization, 2nd edn. Wiley, New York (1990). (A Wiley-Interscience Publication)

    MATH  Google Scholar 

  11. Hajnal, A., Juhász, I.: On hereditarily \(\alpha \)-Lindelöf and \(\alpha \)-separable spaces II. Fund. Math. 81(2), 147–158 (1973/74)

  12. Inamdar, T., Rinot, A.: Was Ulam right? I: Basic theory and subnormal ideals. Topology Appl. (2022)

  13. Kojman, M., Rinot, A., Steprāns, J.: Ramsey theory over partitions II: Negative Ramsey relations and pump-up theorems. Israel J. Math. (2022) http://assafrinot.com/paper/50

  14. Kojman, M., Rinot, A., Steprāns, J.: Ramsey theory over partitions. III: Strongly Luzin sets and partition relations. Proc. Am. Math. Soc. 151(01), 369–384 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lambie-Hanson, C., Rinot, A.: Knaster and friends I: closed colorings and precalibers. Algebra Universalis 79(4), 9039 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lambie-Hanson, C., Rinot, A.: Knaster and friends II: the C-sequence number. J. Math. Log. 21(1), 2150002, 54 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, Y., Liuzhen, W.: A Lindelöf group with non-Lindelöf square. Adv. Math. 325, 215–242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rinot, A.: Transforming rectangles into squares, with applications to strong colorings. Adv. Math. 231(2), 1085–1099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rinot, A.: Chain conditions of products, and weakly compact cardinals. Bull. Symb. Log. 20(3), 293–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rinot, A.: Complicated colorings. Math. Res. Lett. 21(6), 1367–1388 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rinot, A.: Chromatic numbers of graphs—large gaps. Combinatorica 35(2), 215–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rinot, A.: Higher Souslin trees and the GCH, revisited. Adv. Math. 311(C), 510–531 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rinot, A., Zhang, J.: Transformations of the transfinite plane. Forum Math. Sigma 9(e16), 1–25 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Roitman, J.: A reformulation of \(S\) and \(L\). Proc. Am. Math. Soc. 69(2), 344–348 (1978)

    MathSciNet  MATH  Google Scholar 

  25. Shelah, S.: Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions. Israel J. Math. 62(2), 213–256 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shelah, S.: Colouring and non-productivity of \(\aleph _2\)-cc. Ann. Pure Appl. Logic 84, 153–174 (1997)

    Article  MathSciNet  Google Scholar 

  27. Sierpiński, W.: Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2(3), 285–287 (1933)

    MATH  Google Scholar 

  28. Todorcevic, S.: Walks on Ordinals and Their Characteristics. Progress in Mathematics, vol. 263. Birkhäuser Verlag, Basel (2007)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The first author is partially supported by the European Research Council (grant agreement ERC-2018-StG 802756) and by the Israel Science Foundation (grant agreement 2066/18). The second author is supported by the Foreign Postdoctoral Fellowship Program of the Israel Academy of Sciences and Humanities and by the Israel Science Foundation (grant agreement 2066/18). The main results of this paper were presented by the first author at an online meeting of the Toronto Set Theory Seminar, February 2021. He thanks the organizers for the invitation and the participants for their feedback. The authors thank the anonymous referees X, Y and Z for their feedback. We are especially grateful to anonymous referee X for an exceptionally detailed and thorough report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Rinot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinot, A., Zhang, J. Strongest Transformations. Combinatorica 43, 149–185 (2023). https://doi.org/10.1007/s00493-023-00011-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00011-0

Keywords

Mathematics Subject Classification

Navigation