Skip to main content
Log in

On the Density of Critical Graphs with No Large Cliques

Combinatorica Aims and scope Submit manuscript

Cite this article

Abstract

A graph G is k-critical if \(\chi (G) = k\) and every proper subgraph of G is \((k - 1)\)-colorable, and if L is a list assignment for G, then G is L-critical if G is not L-colorable but every proper subgraph of G is. In 2014, Kostochka and Yancey proved a lower bound on the average degree of an n-vertex k-critical graph tending to \(k - \frac{2}{k - 1}\) for large n that is tight for infinitely many values of n, and they asked how their bound may be improved for graphs not containing a large clique. Answering this question, we prove that there exists some \(\varepsilon > 0\) for which the following holds. If k is sufficiently large and G is a \(K_{\omega + 1}\)-free L-critical graph where \(\omega \le k - \log ^{10}k\) and L is a list assignment for G such that \(|L(v)| = k - 1\) for all \(v\in V(G)\), then the average degree of G is at least \((1 + \varepsilon )(k - 1) - \varepsilon \omega - 1\). This result implies that for some \(\varepsilon > 0\), for every graph G satisfying \(\omega (G) \le \textrm{mad}(G) - \log ^{10}\textrm{mad}(G)\) where \(\omega (G)\) is the size of the largest clique in G and \(\textrm{mad}(G)\) is the maximum average degree of G, the list-chromatic number of G is at most .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Appel, K., Haken, W.: Every planar map is four colorable. Bull. Am. Math. Soc. 82(5), 711–712 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonamy, M., Perrett, T., Postle, L.: Colouring graphs with sparse neighbourhoods: bounds and applications. J. Comb. Theory Ser. B 155, 278–317 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37(2), 194–197 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  4. Delcourt, M., Postle, L.: On the list coloring version of Reed’s Conjecture

  5. Dirac, G.A.: A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc. Lond. Math. Soc. (3) 7, 161–195 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dvořák, Z., Postle, L.: Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8. J. Comb. Theory Ser. B 129, 38–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gallai, T.: Kritische Graphen. I. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 165–192 (1963)

    MathSciNet  MATH  Google Scholar 

  8. Gallai, T.: Kritische Graphen. II. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8, 373–395 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Hurley, E., de Joannis de Verclos, R., Kang, R. J.: An improved procedure for colouring graphs of bounded local density. Adv. Comb. Paper No. 7, 33 pp. (2022)

  10. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. A Wiley-Interscience Publication, Wiley, New York (1995)

    Google Scholar 

  11. Kelly, T., Postle, L.: A local epsilon version of Reed’s Conjecture. J. Comb. Theory Ser. B 141, 181–222 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kelly, T., Postle, L.: A local epsilon version of Reed’s Conjecture. arXiv:1911.02672 (2021)

  13. Kelly, T., Postle, L.: Corrigendum to “A local epsilon version of Reed’s Conjecture’’ [J. Comb. Theory Ser. B 141 (2020) 181–222]. J. Comb. Theory Ser. B 151, 509–512 (2021)

    Article  MATH  Google Scholar 

  14. Kostochka, A.V., Stiebitz, M.: Excess in colour-critical graphs. In Graph theory and combinatorial biology (Balatonlelle, 1996), volume 7 of Bolyai Soc. Math. Stud., pp. 87–99. János Bolyai Math. Soc., Budapest (1999)

  15. Kostochka, A., Stiebitz, M.: On the number of edges in colour-critical graphs and hypergraphs. Combinatorica 20(4), 521–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostochka, A., Yancey, M.: Ore’s conjecture on color-critical graphs is almost true. J. Comb. Theory Ser. B 109, 73–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krivelevich, M.: On the minimal number of edges in color-critical graphs. Combinatorica 17(3), 401–426 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ore, O.: The Four-Color Problem. Pure and Applied Mathematics. Academic Press, New York (1967)

    MATH  Google Scholar 

  19. Reed, B.: \(\omega \), \({\Delta }\), and \(\chi \). J. Graph Theory 27(4), 177–212 (1998)

    Article  MathSciNet  Google Scholar 

  20. Rivin, I.: Counting cycles and finite dimensional \(L^p\) norms. Adv. Appl. Math. 29(4), 647–662 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J. Comb. Theory Ser. B 70(1), 2–44 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their careful reading of this paper and their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Kelly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Kelly: Partially supported by the EPSRC, Grant No. EP/N019504/1. L. Postle: Partially supported by NSERC under Discovery Grant No. 2019-04304, the Ontario Early Researcher Awards program and the Canada Research Chairs program.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, T., Postle, L. On the Density of Critical Graphs with No Large Cliques. Combinatorica 43, 57–89 (2023). https://doi.org/10.1007/s00493-023-00007-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00007-w

Keywords

Mathematics Subject Classification

Navigation