Skip to main content
Log in

A Proof of the Multiplicative 1-2-3 Conjecture

Combinatorica Aims and scope Submit manuscript

Cite this article

Abstract

We prove that the product version of the 1-2-3 Conjecture, raised by Skowronek-Kaziów in 2012, is true. Namely, for every connected graph with order at least 3, we prove that we can assign labels 1, 2, 3 to the edges in such a way that no two adjacent vertices are incident to the same product of labels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Recall that a proper k-vertex-colouring of a graph G is a partition \((V_1, \dots , V_k\)) of V(G) where all \(V_i\)’s are independent. The chromatic number \(\chi (G)\) of G is the smallest \(k \ge 1\) such that proper k-vertex-colourings of G exist. We say that G is k-colourable if \(\chi (G) \le k\).

References

  1. Addario-Berry, L., Aldred, R.E.L., Dalal, K., Reed, B.A.: Vertex colouring edge partitions. J. Comb. Theory Ser. B 94(2), 237–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8, 7–29 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anholcer, M.: Product irregularity strength of graphs. Discret. Math. 309(22), 6434–6439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bensmail, J., Hocquard, H., Lajou, D., Sopena, É.: Further evidence towards the multiplicative 1-2-3 conjecture. Discret. Appl. Math. 307, 135–144 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bensmail, J., Hocquard, H., Lajou, D., Sopena, É.: On a list variant of the multiplicative 1-2-3 conjecture. Graphs Comb. 38(3), 88 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Comb. 1, 6 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Kalkowski, M.: A note on the 1,2-Conjecture. Ph.D. thesis, Adam Mickiewicz University, Poland, (2009)

  8. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards the 1-2-3 conjecture. J. Comb. Theory Ser. B 100, 347–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kalkowski, M., Karoński, M., Pfender, F.: A new upper bound for the irregularity strength of graphs. SIAM J. Discret. Math. 25(3), 1319–1321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kalkowski, M., Karoński, M., Pfender, F.: The 1-2-3-conjecture for hypergraphs. J. Graph Theory 85(3), 706–715 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours. J. Comb. Theory Ser. B 91, 151–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Przybyło, J.: The 1-2-3 conjecture almost holds for regular graphs. J. Comb. Theory Ser. B 147, 183–200 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Przybyło, J., Woźniak, M.: On a 1,2 conjecture. Discret. Math. Theor. Comput. Sci. 12(1), 101–108 (2010)

    MATH  Google Scholar 

  14. Skowronek-Kaziów, J.: Multiplicative vertex-colouring weightings of graphs. Inf. Process. Lett. 112(5), 191–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vučković, B.: Multi-set neighbor distinguishing \(3\)-edge coloring. Discret. Math. 341, 820–824 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the three anonymous referees for their careful reading of a previous version of the current work, which allowed to improve the general quality and correctness not only of the main proof, but also of the whole paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bensmail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensmail, J., Hocquard, H., Lajou, D. et al. A Proof of the Multiplicative 1-2-3 Conjecture. Combinatorica 43, 37–55 (2023). https://doi.org/10.1007/s00493-023-00003-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00003-0

Keywords

Mathematics Subject Classification

Navigation