Skip to main content

Complexity of Branch-and-Bound and Cutting Planes in Mixed-Integer Optimization — II

Abstract

We study the complexity of cutting planes and branching schemes from a theoretical point of view. We give some rigorous underpinnings to the empirically observed phenomenon that combining cutting planes and branching into a branch-and-cut framework can be orders of magnitude more efficient than employing these tools on their own. In particular, we give general conditions under which a cutting plane strategy and a branching scheme give a provably exponential advantage in efficiency when combined into branch-and-cut. The efficiency of these algorithms is evaluated using two concrete measures: number of iterations and sparsity of constraints used in the intermediate linear/convex programs. To the best of our knowledge, our results are the first mathematically rigorous demonstration of the superiority of branch-and-cut over pure cutting planes and pure branch-and-bound.

This is a preview of subscription content, access via your institution.

References

  1. K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra and J. W. Smeltink: Market split and basis reduction: Towards a solution of the cornuéjols-dawande instances, INFORMS Journal on Computing 12 (2000), 192–202.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Arora and B. Barak: Computational complexity: a modern approach, Cambridge University Press, 2009.

  3. A. Basu: Complexity of optimizing over the integers, arXiv: 2110.06172, 2021.

  4. A. Basu, M. Conforti, M. Di Summa and H. Jiang: Complexity of cutting plane and branch-and-bound algorithms for mixed-integer optimization, arXiv: 2003.05023, 2019.

  5. P. Beame, N. Fleming, R. Impagliazzo, A. Kolokolova, D. Pankratov, T. Pitassi and R. Robere: Stabbing Planes, in: Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz International Proceedings in Informatics (LIPIcs) 10, 1–20, Dagstuhl, Germany, 2018, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  6. R. E. Bixby: Solving real-world linear programs: A decade and more of progress, Operations research 50 (2002), 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bockmayr, F. Eisenbrand, M. Hartmann and A. S. Schulz: On the Chvátal rank of polytopes in the 0/1 cube, Discrete Applied Mathematics 98 (1999), 21–27.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bonet, T. Pitassi and R. Raz: Lower bounds for cutting planes proofs with small coefficients, The Journal of Symbolic Logic 62 (1997), 708–728.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. R. Buss and P. Clote: Cutting planes, connectivity, and threshold logic, Archive for Mathematical Logic 35 (1996), 33–62.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ch.-P. Chen and F. Qi: Completely monotonic function associated with the gamma functions and proof of Wallis’ inequality, Tamkang Journal of Mathematics 36 (2005), 303–307.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Chvátal: Hard knapsack problems, Operations Research 28 (1980), 1402–1411.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Chvátal: Cutting-plane proofs and the stability number of a graph, Report Number 84326-OR, Institut fur Ökonometrie und Operations Research, Universität Bonn, Bonn, 1984.

    Google Scholar 

  13. V. Chvátal, W. J. Cook and M. Hartmann: On cutting-plane proofs in combinatorial optimization, Linear algebra and its applications 114 (1989), 544–548.

    MathSciNet  MATH  Google Scholar 

  14. P. Clote: Cutting planes and constant depth frege proofs, in: Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, 296–307, 1992.

  15. M. Conforti, G. Cornuéjols and G. Zambelli: Integer programming, volume 271, Springer, 2014.

  16. M. Conforti, A. Del Pia, M. Di Summa, Y. Faenza and R. Grappe: Reverse Chvátal-Gomory rank, SIAM Journal on Discrete Mathematics 29 (2015), 166–181.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. J. Cook, C. R. Coullard and Gy. Turán: On the complexity of cutting-plane proofs, Discrete Applied Mathematics 18 (1987), 25–38.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. J. Cook and S. Dash: On the matrix-cut rank of polyhedra, Mathematics of Operations Research 26 (2001), 19–30.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. J. Cook and M. Hartmann: On the complexity of branch and cut methods for the traveling salesman problem, Polyhedral Combinatorics 1 (1990), 544–548.

    MathSciNet  MATH  Google Scholar 

  20. W. J. Cook, R. Kannan and A. Schrijver: Chvátal closures for mixed integer programming problems, Mathematical Programming 47 (1990), 544–548.

    Article  MATH  Google Scholar 

  21. G. Cornuéjols, L. Liberti and G. Nannicini: Improved strategies for branching on general disjunctions, Mathematical Programming 130 (2011), 225–247.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Dadush and S. Tiwari: On the complexity of branching proofs, arXiv: 2006.04124, 2020.

  23. S. Dash: An exponential lower bound on the length of some classes of branch-and-cut proofs, in: International Conference on Integer Programming and Combinatorial Optimization (IPCO), 145–160, Springer, 2002.

  24. S. Dash: Exponential lower bounds on the lengths of some classes of branch-and-cut proofs, Mathematics of Operations Research 30 (2005), 678–700.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Dash: On the complexity of cutting-plane proofs using split cuts, Operations Research Letters 38 (2010), 109–114.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. S. Dey, Y. Dubey and M. Molinaro: Lower bounds on the size of general branch-and-bound trees, arXiv: 2103.09807, 2021.

  27. S. S. Dey, A. Iroume and M. Molinaro: Some lower bounds on sparse outer approximations of polytopes, Operations Research Letters 43 (2015), 323–328.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. S. Dey, M. Molinaro and Q. Wang: Approximating polyhedra with sparse inequalities, Mathematical Programming 154 (2015), 329–352.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. S. Dey, M. Molinaro and Q. Wang: Analysis of sparse cutting planes for sparse milps with applications to stochastic milps, Mathematics of Operations Research 43 (2018), 304–332.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Eisenbrand and A. S. Schulz: Bounds on the Chvátal rank of polytopes in the 0/1-cube, Combinatorica 23 (2003), 245–261.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. K. Eldersveld and M. A. Saunders: A block-lu update for large-scale linear programming, SIAM Journal on Matrix Analysis and Applications 13 (1992), 191201.

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Fleming, M. Göös, R. Impagliazzo, T. Pitassi, R. Robere, L.-Y. Tan and A. Wigderson: On the power and limitations of branch and cut, arXiv: 2102.05019, 2021.

  33. A. Goerdt: Cutting plane versus frege proof systems, in: International Workshop on Computer Science Logic, 174–194, Springer, 1990.

  34. A. Goerdt: The cutting plane proof system with bounded degree of falsity, in: International Workshop on Computer Science Logic, 119–133, Springer, 1991.

  35. D. Grigoriev, E. A. Hirsch and D. V. Pasechnik: Complexity of semi-algebraic proofs, in: Annual Symposium on Theoretical Aspects of Computer Science (STACS), 419–430, Springer, 2002.

  36. M. Grötschel, L. Lovász and A. Schrijver: Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics: Study and Research Texts, Springer-Verlag, Berlin, 1988.

    Book  MATH  Google Scholar 

  37. E. A. Hirsch and S. I. Nikolenko: Simulating cutting plane proofs with restricted degree of falsity by resolution, in: International Conference on Theory and Applications of Satisfiability Testing, 135–142, Springer, 2005.

  38. R. Impagliazzo, T. Pitassi and A. Urquhart: Upper and lower bounds for treelike cutting planes proofs, in: Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, 220–228, IEEE, 1994.

  39. R. G. Jeroslow: Trivial integer programs unsolvable by branch-and-bound, Mathematical Programming 6 (1974), 105–109.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Karamanov and G. Cornuéjols: Branching on general disjunctions, Mathematical Programming 128 (2011), 403–436.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Kojevnikov: Improved lower bounds for tree-like resolution over linear inequalities, in: International Conference on Theory and Applications of Satisfiability Testing, 70–79, Springer, 2007.

  42. J. Krajíček: Discretely ordered modules as a first-order extension of the cutting planes proof system, The Journal of Symbolic Logic 63 (1998), 1582–1596.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Lodi: Mixed integer programming computation, in: 50 Years of Integer Programming 1958–2008, 619–645, Springer, 2010.

  44. L. Lovász: An algorithmic theory of numbers, graphs, and convexity, volume 50, SIAM, 1986.

  45. A. Mahajan and Th. K. Ralphs: Experiments with branching using general disjunctions, in: Operations Research and Cyber-Infrastructure, 101–118, Springer, 2009.

  46. H. Mahmoud and J. W. Chinneck: Achieving milp feasibility quickly using general disjunctions, Computers & operations research 40 (2013), 2094–2102.

    Article  MATH  Google Scholar 

  47. J. Ostrowski, J. Linderoth, F. Rossi and S. Smriglio: Constraint orbital branching, in: International Conference on Integer Programming and Combinatorial Optimization, 225–239, Springer, 2008.

  48. J. H. Owen and S. Mehrotra: A disjunctive cutting plane procedure for general mixed-integer linear programs, Mathematical Programming 89 (2001), 437–448.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. H. Owen and S. Mehrotra: Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs, Computational optimization and applications 20 (2001), 159–170.

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Pataki, M. Tural and E. B. Wong: Basis reduction and the complexity of branch-and-bound, in: Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete algorithms, 1254–1261, SIAM, 2010.

  51. P. Pudlák: Lower bounds for resolution and cutting plane proofs and monotone computations, The Journal of Symbolic Logic 62 (1997), 981–998.

    Article  MathSciNet  MATH  Google Scholar 

  52. P. Pudlák: On the complexity of the propositional calculus, London Mathematical Society Lecture Note Series, 197–218, 1999.

  53. A. A. Razborov: On the width of semialgebraic proofs and algorithms, Mathematics of Operations Research 42 (2017), 1106–1134.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. K. Reid: A sparsity-exploiting variant of the Bartels-Golub decomposition for linear programming bases, Mathematical Programming 24 (1982), 55–69.

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Rothvoss and L. Sanità: 0/1 polytopes with quadratic Chvátal rank, in: International Conference on Integer Programming and Combinatorial Optimization (IPCO), 349–361, Springer, 2013.

  56. A. Schrijver: Theory of Linear and Integer Programming, John Wiley and Sons, New York, 1986.

    MATH  Google Scholar 

  57. E. Sperner: Ein satz über untermengen einer endlichen menge, Mathematische Zeitschrift 27 (1928), 544–548.

    Article  MathSciNet  MATH  Google Scholar 

  58. R. J. Venderbei: Sparsity Matters, 2017. https://vanderbei.princeton.edu/tex/talks/IDACCR/SparsityMatters.pdf

  59. G. N. Watson: A note on gamma functions, Edinburgh Mathematical Notes 42 (1959), 544–548.

    Google Scholar 

Download references

Acknowledgments

We are very grateful to an anonymous referee who raised some subtle, but very important, points that were unclear in a previous version of the paper. Addressing those concerns has helped to clarify these delicate points. Amitabh Basu and Hongyi Jiang gratefully acknowledge support from ONR Grant N000141812096, NSF Grant CCF2006587, and AFOSR Grant FA95502010341. Michele Conforti and Marco Di Summa were supported by a SID grant of the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabh Basu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basu, A., Conforti, M., Di Summa, M. et al. Complexity of Branch-and-Bound and Cutting Planes in Mixed-Integer Optimization — II. Combinatorica 42 (Suppl 1), 971–996 (2022). https://doi.org/10.1007/s00493-022-4884-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-022-4884-7

Mathematics Subject Classification (2010)

  • 03F20
  • 90C11
  • 90C57
  • 03B05