Skip to main content

The 1-2-3 Conjecture Holds for Graphs with Large Enough Minimum Degree

Abstract

Is there a universal constant K, say K = 3, such that one may dispose of all pairs of adjacent vertices with equal degrees from any given connected graph of order at least three by blowing its selected edges into at most K parallel edges? This question was first posed in 2004 by Karoński, Łuczak and Thomason, who equivalently asked if one may assign weights 1,2,3 to the edges of every such graph so that adjacent vertices receive distinct weighted degrees — the sums of their incident weights. This basic problem is commonly referred to as the 1-2-3 Conjecture nowadays, and has been addressed in multiple papers. Thus far it is known that weights 1, 2, 3, 4,5 are sufficient [30]. We show that this conjecture holds if the minimum degree δ of a graph is large enough compared to its maximum degree Δ, i.e., when δ = Ω(log Δ).

This is a preview of subscription content, access via your institution.

References

  1. L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed and A. Thomason: Vertex-Colouring Edge-Weightings, Combinatorica 27 (2007), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed: Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005), 237–244.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Addario-Berry, K. Dalal and B. A. Reed: Degree Constrained Subgraphs, Discrete Appl. Math. 156 (2008), 1168–1174.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Aigner and E. Triesch: Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990), 439–449.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Alon and J. H. Spencer: The Probabilistic Method, 2nd edition, Wiley, New York, 2000.

    Book  MATH  Google Scholar 

  6. D. Amar: Irregularity strength of regular graphs of large degree, Discrete Math. 114 (1993), 9–17.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. N. Balister, E. GyŐri, J. Lehel and R. H. Schelp: Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007), 237–250.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Bartnicki, J. Grytczuk and S. Niwczyk: Weight Choosability of Graphs, J. Graph Theory 60 (2009), 242–256.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak: On decomposing regular graphs into locally irregular subgraphs, European J. Combin. 49 (2015), 90–104.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bensmail: A 1-2-3-4 result for the 1-2-3 Conjecture in 5-regular graphs, Discrete Appl. Math. 257 (2019), 31–39.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bensmail, M. Merker and C. Thomassen: Decomposing graphs into a constant number of locally irregular subgraphs, European J. Combin. 60 (2017), 124–134.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Bohman and D. Kravitz: On the irregularity strength of trees, J. Graph Theory 45 (2004), 241–254.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Chartrand, P. Erdős and O. R. Oellermann: How to Define an Irregular Graph, College Math. J. 19 (1988), 36–42.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba: Irregular networks, Congr. Numer. 64 (1988), 197–210.

    MathSciNet  MATH  Google Scholar 

  15. B. Cuckler and F. Lazebnik: Irregularity Strength of Dense Graphs, J. Graph Theory 58 (2008), 299–313.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. H. Dinitz, D. K. Garnick and A. Gyárfás: On the irregularity strength of the m × n grid, J. Graph Theory 16 (1992), 355–374.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Dudek and D. Wajc: On the complexity of vertex-coloring edge-weightings, Discrete Math. Theor. Comput. Sci. 13 (2011), 45–50.

    MathSciNet  MATH  Google Scholar 

  18. G. Ebert, J. Hemmeter, F. Lazebnik and A. J. Woldar: On the irregularity strength of some graphs, Congr. Numer. 71 (1990), 39–52.

    MathSciNet  MATH  Google Scholar 

  19. R. J. Faudree, M. S. Jacobson, J. Lehel and R. Schelp: Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1989), 223–240.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. J. Faudree and J. Lehel: Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52, Combinatorics, Eger North Holland, Amsterdam, (1987), 247–256.

    Google Scholar 

  21. M. Ferrara, R. J. Gould, M. Karoński and F. Pfender: An iterative approach to graph irregularity strength, Discr. Appl. Math. 158 (2010), 1189–1194.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Frieze, R. J. Gould, M. Karoński and F. Pfender: On Graph Irregularity Strength, J. Graph Theory 41 (2002), 120–137.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. A. Gallian: Graph Labeling, Electron. J. Combin. (2019), 1–535, Dynamic survey DS6.

  24. A. Gyárfás: The irregularity strength of Km,m is 4 for odd m, Discrete Math. 71 (1998), 273–274.

    Article  MATH  Google Scholar 

  25. H. Hatami: Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005), 246–256.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Janson, T. Łuczak and A. Ruciński: Random Graphs, Wiley, New York, 2000.

    Book  MATH  Google Scholar 

  27. G. Joret and W. Lochet: Progress on the adjacent vertex distinguishing edge colouring conjecture, SIAM J. Discrete Math. 34 (2020), 2221–2238.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Kalkowski: A note on 1,2-Conjecture, in Ph.D. Thesis, PoznaŃ, 2009.

  29. M. Kalkowski, M. Karoński and F. Pfender: A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011), 1319–1321.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kalkowski, M. Karoński and F. Pfender: Vertex-coloring edge-weightings: Towards the 1-2-3 conjecture, J. Combin. Theory Ser. B 100 (2010), 347–349.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Karoński, T. Łuczak and A. Thomason: Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004), 151–157.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Lehel: Facts and quests on degree irregular assignments, Graph Theory, Combinatorics and Applications, Willey, New York, 1991, 765–782.

    MATH  Google Scholar 

  33. K. S. Lyngsie and L. Zhong: Vertex colouring edge weightings: A logarithmic upper bound on weight-choosability, Electron. J. Combin. 28 (2021), #P2.11.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Majerski and J. Przybyło: On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014), 197–205.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Nierhoff: A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000), 313–323.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Przybyło: Asymptotic confirmation of the Faudree-Lehel Conjecture on irregularity strength for all but extreme degrees, J. Graph Theory 100 (2022), 189–204.

    Article  MathSciNet  Google Scholar 

  37. J. Przybyło: Irregularity strength of regular graphs, Electron. J. Combin. 15 (2008), #R82.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Przybyło: Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009), 511–516.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. PrzybyŁo: On decomposing graphs of large minimum degree into locally irregular subgraphs, Electron. J. Combin. 23 (2016), #P2.31

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Przybyło: The 1-2-3 Conjecture almost holds for regular graphs, J. Combin. Theory Ser. B 147 (2021), 183–200.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Przybyło and M. Woźniak: On a 1,2 Conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010), 101–108.

    MathSciNet  MATH  Google Scholar 

  42. J. Przybyło and M. Woźniak: Total weight choosability of graphs, Electron. J. Combin. 18 (2011), #P112.

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Seamone: The 1-2-3 Conjecture and related problems: a survey, Technical report, available online at http://arxiv.org/abs/1211.5122, 2012.

  44. C. Thomassen, Y. Wu and C. Q. Zhang: The 3-flow conjecture, factors modulo k, and the 1-2-3 conjecture, J. Combin. Theory Ser. B 121 (2016), 308–325.

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Vučković: Multi-set neighbor distinguishing 3-edge coloring, Discrete Math. 341 (2018), 820–824.

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Wang and Q. Yu: On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008), 581–587.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Wong and X. Zhu: Every graph is (2,3)-choosable, Combinatorica 36 (2016), 121–127.

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Wong and X. Zhu: Total weight choosability of graphs, J. Graph Theory 66 (2011), 198–212.

    Article  MathSciNet  MATH  Google Scholar 

  49. Z. Zhang, L. Liu and J. Wang: Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002), 623–626.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Zhong: The 1-2-3-conjecture holds for dense graphs, J. Graph Theory 90 (2019), 561–564.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Przybyło.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Przybyło, J. The 1-2-3 Conjecture Holds for Graphs with Large Enough Minimum Degree. Combinatorica 42 (Suppl 2), 1487–1512 (2022). https://doi.org/10.1007/s00493-021-4822-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-021-4822-0

Mathematics Subject Classification (2010)

  • 05C15
  • 05C78