Abstract
Is there a universal constant K, say K = 3, such that one may dispose of all pairs of adjacent vertices with equal degrees from any given connected graph of order at least three by blowing its selected edges into at most K parallel edges? This question was first posed in 2004 by Karoński, Łuczak and Thomason, who equivalently asked if one may assign weights 1,2,3 to the edges of every such graph so that adjacent vertices receive distinct weighted degrees — the sums of their incident weights. This basic problem is commonly referred to as the 1-2-3 Conjecture nowadays, and has been addressed in multiple papers. Thus far it is known that weights 1, 2, 3, 4,5 are sufficient [30]. We show that this conjecture holds if the minimum degree δ of a graph is large enough compared to its maximum degree Δ, i.e., when δ = Ω(log Δ).
This is a preview of subscription content, access via your institution.
References
L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed and A. Thomason: Vertex-Colouring Edge-Weightings, Combinatorica 27 (2007), 1–12.
L. Addario-Berry, R. E. L. Aldred, K. Dalal and B. A. Reed: Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005), 237–244.
L. Addario-Berry, K. Dalal and B. A. Reed: Degree Constrained Subgraphs, Discrete Appl. Math. 156 (2008), 1168–1174.
M. Aigner and E. Triesch: Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990), 439–449.
N. Alon and J. H. Spencer: The Probabilistic Method, 2nd edition, Wiley, New York, 2000.
D. Amar: Irregularity strength of regular graphs of large degree, Discrete Math. 114 (1993), 9–17.
P. N. Balister, E. GyŐri, J. Lehel and R. H. Schelp: Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007), 237–250.
T. Bartnicki, J. Grytczuk and S. Niwczyk: Weight Choosability of Graphs, J. Graph Theory 60 (2009), 242–256.
O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak: On decomposing regular graphs into locally irregular subgraphs, European J. Combin. 49 (2015), 90–104.
J. Bensmail: A 1-2-3-4 result for the 1-2-3 Conjecture in 5-regular graphs, Discrete Appl. Math. 257 (2019), 31–39.
J. Bensmail, M. Merker and C. Thomassen: Decomposing graphs into a constant number of locally irregular subgraphs, European J. Combin. 60 (2017), 124–134.
T. Bohman and D. Kravitz: On the irregularity strength of trees, J. Graph Theory 45 (2004), 241–254.
G. Chartrand, P. Erdős and O. R. Oellermann: How to Define an Irregular Graph, College Math. J. 19 (1988), 36–42.
G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba: Irregular networks, Congr. Numer. 64 (1988), 197–210.
B. Cuckler and F. Lazebnik: Irregularity Strength of Dense Graphs, J. Graph Theory 58 (2008), 299–313.
J. H. Dinitz, D. K. Garnick and A. Gyárfás: On the irregularity strength of the m × n grid, J. Graph Theory 16 (1992), 355–374.
A. Dudek and D. Wajc: On the complexity of vertex-coloring edge-weightings, Discrete Math. Theor. Comput. Sci. 13 (2011), 45–50.
G. Ebert, J. Hemmeter, F. Lazebnik and A. J. Woldar: On the irregularity strength of some graphs, Congr. Numer. 71 (1990), 39–52.
R. J. Faudree, M. S. Jacobson, J. Lehel and R. Schelp: Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1989), 223–240.
R. J. Faudree and J. Lehel: Bound on the irregularity strength of regular graphs, Colloq. Math. Soc. János Bolyai, 52, Combinatorics, Eger North Holland, Amsterdam, (1987), 247–256.
M. Ferrara, R. J. Gould, M. Karoński and F. Pfender: An iterative approach to graph irregularity strength, Discr. Appl. Math. 158 (2010), 1189–1194.
A. Frieze, R. J. Gould, M. Karoński and F. Pfender: On Graph Irregularity Strength, J. Graph Theory 41 (2002), 120–137.
J. A. Gallian: Graph Labeling, Electron. J. Combin. (2019), 1–535, Dynamic survey DS6.
A. Gyárfás: The irregularity strength of Km,m is 4 for odd m, Discrete Math. 71 (1998), 273–274.
H. Hatami: Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005), 246–256.
S. Janson, T. Łuczak and A. Ruciński: Random Graphs, Wiley, New York, 2000.
G. Joret and W. Lochet: Progress on the adjacent vertex distinguishing edge colouring conjecture, SIAM J. Discrete Math. 34 (2020), 2221–2238.
M. Kalkowski: A note on 1,2-Conjecture, in Ph.D. Thesis, PoznaŃ, 2009.
M. Kalkowski, M. Karoński and F. Pfender: A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011), 1319–1321.
M. Kalkowski, M. Karoński and F. Pfender: Vertex-coloring edge-weightings: Towards the 1-2-3 conjecture, J. Combin. Theory Ser. B 100 (2010), 347–349.
M. Karoński, T. Łuczak and A. Thomason: Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004), 151–157.
J. Lehel: Facts and quests on degree irregular assignments, Graph Theory, Combinatorics and Applications, Willey, New York, 1991, 765–782.
K. S. Lyngsie and L. Zhong: Vertex colouring edge weightings: A logarithmic upper bound on weight-choosability, Electron. J. Combin. 28 (2021), #P2.11.
P. Majerski and J. Przybyło: On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014), 197–205.
T. Nierhoff: A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000), 313–323.
J. Przybyło: Asymptotic confirmation of the Faudree-Lehel Conjecture on irregularity strength for all but extreme degrees, J. Graph Theory 100 (2022), 189–204.
J. Przybyło: Irregularity strength of regular graphs, Electron. J. Combin. 15 (2008), #R82.
J. Przybyło: Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009), 511–516.
J. PrzybyŁo: On decomposing graphs of large minimum degree into locally irregular subgraphs, Electron. J. Combin. 23 (2016), #P2.31
J. Przybyło: The 1-2-3 Conjecture almost holds for regular graphs, J. Combin. Theory Ser. B 147 (2021), 183–200.
J. Przybyło and M. Woźniak: On a 1,2 Conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010), 101–108.
J. Przybyło and M. Woźniak: Total weight choosability of graphs, Electron. J. Combin. 18 (2011), #P112.
B. Seamone: The 1-2-3 Conjecture and related problems: a survey, Technical report, available online at http://arxiv.org/abs/1211.5122, 2012.
C. Thomassen, Y. Wu and C. Q. Zhang: The 3-flow conjecture, factors modulo k, and the 1-2-3 conjecture, J. Combin. Theory Ser. B 121 (2016), 308–325.
B. Vučković: Multi-set neighbor distinguishing 3-edge coloring, Discrete Math. 341 (2018), 820–824.
T. Wang and Q. Yu: On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008), 581–587.
T. Wong and X. Zhu: Every graph is (2,3)-choosable, Combinatorica 36 (2016), 121–127.
T. Wong and X. Zhu: Total weight choosability of graphs, J. Graph Theory 66 (2011), 198–212.
Z. Zhang, L. Liu and J. Wang: Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002), 623–626.
L. Zhong: The 1-2-3-conjecture holds for dense graphs, J. Graph Theory 90 (2019), 561–564.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Przybyło, J. The 1-2-3 Conjecture Holds for Graphs with Large Enough Minimum Degree. Combinatorica 42 (Suppl 2), 1487–1512 (2022). https://doi.org/10.1007/s00493-021-4822-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00493-021-4822-0
Mathematics Subject Classification (2010)
- 05C15
- 05C78