S. Bang: Geometric distance-regular graphs without 4-claws, Linear Algebra Appl. 438 (2013), 37–46.
MathSciNet
Article
Google Scholar
S. Bang: Diameter bounds for geometric distance-regular graphs, Discrete Math. 341 (2018), 253–260.
MathSciNet
Article
Google Scholar
S. Bang: Geometric antipodal distance-regular graphs with a given smallest eigenvalue, Graphs Combin. 35 (2019), 1387–1399.
MathSciNet
Article
Google Scholar
S. Bang, A. Dubickas, J. H. Koolen and V. Moulton: There are only finitely many distance-regular graphs of fixed valency greater than two, Adv. Math. 269 (2015), 1–55.
MathSciNet
Article
Google Scholar
S. Bang, A. L. Gavrilyuk and J. H. Koolen: Distance-regular graphs without 4-claws, European J. Combin. 80 (2019), 120–142.
MathSciNet
Article
Google Scholar
S. Bang, A. Hiraki and J. H. Koolen: Improving diameter bounds for distance-regular graphs, European J. Combin. 27 (2006), 79–89.
MathSciNet
Article
Google Scholar
S. Bang, A. Hiraki and J. H. Koolen: Delsarte set graphs with small c2, Graphs Combin. 26 (2010), 147–162.
MathSciNet
Article
Google Scholar
S. Bang, J. H. Koolen and V. Moulton: A bound for the number of columns l(c,a,b) in the intersection array of a distance-regular graph, European J. Combin. 24 (2003), 785–795.
MathSciNet
Article
Google Scholar
N. Biggs: Algebraic graph theory, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2nd edition, 1993.
MATH
Google Scholar
N. L. Biggs, A. G. Boshier and J. Shawe-Taylor: Cubic distance-regular graphs, J. London Math. Soc. 33 (1986), 385–394.
MathSciNet
Article
Google Scholar
A. Blokhuis and A. E. Brouwer: Determination of the distance-regular graphs without 3-claws, Discrete Math. 163 (1997), 225–227.
MathSciNet
Article
Google Scholar
A. E. Brouwer and J. H. Koolen: The distance-regular graphs of valency four, J. Algebraic Combin. 10 (1999), 5–24.
MathSciNet
Article
Google Scholar
A. E. Brouwer, A. M. Cohen and A. Neumaier: Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1989.
Google Scholar
A. E. Brouwer and A. Neumaier: A remark on partial linear spaces of girth 5 with an application to strongly regular graphs, Combinatorica 8 (1988), 57–61.
MathSciNet
Article
Google Scholar
J. S. Caughman: IV, Intersection numbers of bipartite distance-regular graphs, Discrete Math. 163 (1997), 235–241.
MathSciNet
Article
Google Scholar
B. V. C. Collins: The girth of a thin distance-regular graph, Graphs Combin. 13 (1997), 21–30.
MathSciNet
Article
Google Scholar
E. van Dam, J. H. Koolen and H. Tanaka: Distance-regular graphs, Dynamic Surveys, Electron. J. Combin., 2016, http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS22/pdf.
E. R. van Dam and W. H. Haemers: A characterization of distance-regular graphs with diameter three, J. Algebraic Combin. 6 (1997), 299–303.
MathSciNet
Article
Google Scholar
R. M. Damerell and M. A. Georgiacodis: On the maximum diameter of a class of distance-regular graphs, Bull. London Math. Soc. 13 (1981), 316–322.
MathSciNet
Article
Google Scholar
C. D. Godsil: Bounding the diameter of distance-regular graphs, Combinatorica 8 (1988), 333–343.
MathSciNet
Article
Google Scholar
A. Hiraki: A characterization of the odd graphs and the doubled odd graphs with a few of their intersection numbers, European J. Combin. 28 (2007), 246–257.
MathSciNet
Article
Google Scholar
Q. Iqbal, J. H. Koolen, J. Park and M. U. Rehman: Distance-regular graphs with diameter 3 and eigenvalue a2 − c3, Linear Algebra Appl. 587 (2020), 271–290.
MathSciNet
Article
Google Scholar
A. A. Ivanov: Bounding the diameter of a distance-regular graph, Dokl. Akad. Nauk SSSR 271 (1983), 789–792.
MathSciNet
Google Scholar
A. Jurišić, J. Koolen and Š. Miklavič: Triangle- and pentagon-free distance-regular graphs with an eigenvalue multiplicity equal to the valency, J. Combin. Theory Ser. B 94 (2005), 245–258.
MathSciNet
Article
Google Scholar
A. Jurišić, J. Koolen and P. Terwilliger: Tight distance-regular graphs, J. Algebraic Combin. 12 (2000), 163–197.
MathSciNet
Article
Google Scholar
J. H. Koolen: On subgraphs in distance-regular graphs, J. Algebraic Combin. 1 (1992), 353–362.
MathSciNet
Article
Google Scholar
J. H. Koolen: The distance-regular graphs with intersection number a1 ≠ 0 and with an eigenvalue −1 − (b1/2), Combinatorica 18 (1998), 227–234.
MathSciNet
Article
Google Scholar
J. H. Koolen and J. Park: Distance-regular graphs with a1 or c2 at least half the valency, J. Combin. Theory Ser. A 119 (2012), 546–555.
MathSciNet
Article
Google Scholar
J. H. Koolen and J. Park: A relationship between the diameter and the intersection number c2 for a distance-regular graph, Des. Codes Cryptogr. 65 (2012), 55–63.
MathSciNet
Article
Google Scholar
J. H. Koolen, J. Park and H. Yu: An inequality involving the second largest and smallest eigenvalue of a distance-regular graph, Linear Algebra Appl. 434 (2011), 2404–2412.
MathSciNet
Article
Google Scholar
W. J. Martin: Scaffolds: a graph-based system for computations in Bose-Mesner algebras, Linear Algebra Appl. 619 (2021), 50–106.
MathSciNet
Article
Google Scholar
B. Mohar and J. Shawe-Taylor: Distance-biregular graphs with 2-valent vertices and distance-regular line graphs, J. Combin. Theory Ser. B 38 (1985), 193–203.
MathSciNet
Article
Google Scholar
A. Neumaier and S. Penjic: A unified view of inequalities for distance-regular graphs, part I, J. Combin. Theory Ser. B (2020), accepted for publication.
A. Neumaier and S. Penjic: A unified view of inequalities for distance-regular graphs, part II, preprint, https://www.mat.univie.ac.at/~neum/papers.html.
L. Pyber: A bound for the diameter of distance-regular graphs, Combinatorica 19 (1999), 549–553.
MathSciNet
Article
Google Scholar
P. Safet: On the Terwilliger algebra of bipartite distance-regular graphs, University of Primorska, 2019, thesis (Ph.D.), http://osebje.famnit.upr.si/~penjic/research/.
H. Suzuki: Bounding the diameter of a distance regular graph by a function of kd, Graphs Combin. 7 (1991), 363–375.
MathSciNet
Article
Google Scholar
H. Suzuki: Bounding the diameter of a distance regular graph by a function of kd. II, J. Algebra 169 (1994), 713–750.
MathSciNet
Article
Google Scholar
D. E. Taylor and R. Levingston: Distance-regular graphs, in: Combinatorial mathematics (Proc. Internat. Conf. Combinatorial Theory, Australian Nat. Univ., Canberra, 1977), Springer, Berlin, volume 686 of Lecture Notes in Math., 1978, 313–323.
Chapter
Google Scholar
P. Terwilliger: The diameter of bipartite distance-regular graphs, J. Combin. Theory Ser. B 32 (1982), 182–188.
MathSciNet
Article
Google Scholar
P. Terwilliger: Distance-regular graphs and (s,c,α,k)-graphs, J. Combin. Theory Ser. B 34 (1983), 151–164.
MathSciNet
Article
Google Scholar
L. Y. Tsiovkina: Two new infinite families of arc-transitive antipodal distance-regular graphs of diameter three with λ = μ related to groups Sz(q) and 2G2(q), J. Algebraic Combin. 41 (2015), 1079–1087.
MathSciNet
Article
Google Scholar