R. Bacher and Y. Colin de Verdière: Multiplicités des valeurs propres et transformations étoile-triangle des graphes, Bulletin de la Société Mathématique de France 123 (1995), 517–533.
MathSciNet
Article
Google Scholar
Y. Colin de Verdière: Sur un nouvel invariant des graphes et un critère de planarité, Journal of Combinatorial Theory, Series B 50 (1990), 11–21.
MathSciNet
Article
Google Scholar
Y. Colin de Verdière: On a new graph invariant and a criterion for planarity, in: N. Robertson and P.D. Seymour, editors, Graph Structure Theory, volume 147 of Contemporary Mathematics, pages 137–147. American Mathematical Society, 1991.
V. Dujmovlć and S. Whitesides: Three-dimensional drawings, in: R. Tamassia, editor, Handbook of Graph Drawing and Visualization, Discrete Mathematics and Its Applications. CRC Press, 2013.
G. Ewald and G. C. Shephard: Stellar subdivisions of boundary complexes of convex polytopes, Math. Ann. 210 (1974), 7–16.
MathSciNet
Article
Google Scholar
J. Foisy: A newly recognized intrinsically knotted graph, J. Graph Theory 43 (2003), 199–209.
MathSciNet
Article
Google Scholar
F. Goldberg: Optimizing Colin de Verdière matrices of K4,4Linear Algebra and its Applications 438 (2013), 4090–4101.
MathSciNet
Article
Google Scholar
H. van der Holst: A Short Proof of the Planarity Characterization of Colin de Verdière, Journal of Combinatorial Theory, Series B 65 (1995), 269–272.
MathSciNet
Article
Google Scholar
H. van der Holst, M. Laurent and A. Schrijver: On a Minor-Monotone Graph Invariant, Journal of Combinatorial Theory, Series B 65 (1995), 291–304.
MathSciNet
Article
Google Scholar
H. van der Holst, L. Lovász and A. Schrijver: On the invariance of Colin de Verdière’s graph parameter under clique sums, Linear Algebra and its Applications 226 (1995), 509–517.
MathSciNet
Article
Google Scholar
H. van der Holst, L. LOvÁsz and A. Schrijver: The Colin de Verdière graph parameter, 29–85, Bolyai Society Mathematical Studies. János Bolyai Mathematical Society, Hungary, 1999.
MATH
Google Scholar
H. van der Holst and R. Pendavingh: On a graph property generalizing planarity and flatness, Combinatorica 29 (2009), 337–361.
MathSciNet
Article
Google Scholar
I. Izmestiev: The Colin de Verdière number and graphs of polytopes, Israel Journal of Mathematics 178 (2010), 427–444.
MathSciNet
Article
Google Scholar
V. Kaluža and M. Tancer: Even maps, the Colin de Verdière number and representations of graphs, in: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, 2642–2657, 2020.
V. Kaluža and M. Tancer: Even maps, the Colin de Verdière number and representations of graphs, arXiv:1907.05055, 2019.
A. Kotlov, L. Lovász and S. Vempala: The Colin de Verdière number and sphere representations of a graph, Combinatorica 17 (1997), 483–521.
MathSciNet
Article
Google Scholar
L. Lovász: Steinitz representations of polyhedra and the Colin de Verdière number, Journal of Combinatorial Theory, Series B 82 (2001), 223–236.
MathSciNet
Article
Google Scholar
L. Lovász and A. Schrijver: A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proceedings of the American Mathematical Society 126 (1998), 1275–1285.
MathSciNet
Article
Google Scholar
L. Lovász and A. Schrijver: On the null space of a Colin de Verdière matrix, Annales de l’Institut Fourier 49 (1999), 1017–1026.
MathSciNet
Article
Google Scholar
R. McCarty: The extremal function and Colin de Verdière graph parameter, Electronic Journal of Combinatorics, 25(2):P2.32, 2018.
Article
Google Scholar
R. M. McCarty: Personal communication, 2019.
R. Pendavingh: On the Relation Between Two Minor-Monotone Graph Parameters, Combinatorica 18 (1998), 281–292.
MathSciNet
Article
Google Scholar
N. Robertson, P. Seymour and R. Thomas: Sachs’ linkless embedding conjecture, Journal of Combinatorial Theory, Series B 64 (1995), 185–227.
MathSciNet
Article
Google Scholar
N. Robertson and P. D. Seymour: Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65–110.
MathSciNet
Article
Google Scholar
N. Robertson and P. D. Seymour: Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser. B 92 (2004), 325–357.
MathSciNet
Article
Google Scholar
C. P. Rourke and B. J. Sanderson: Introduction to piecewise-linear topology, Springer Study Edition. Springer-Verlag, Berlin-New York, 1982. Reprint.
MATH
Google Scholar
M. Schaefer: Hanani-Tutte and related results, in: Geometry—intuitive, discrete, and convex, volume 24 of Bolyai Soc. Math. Stud., 259–299. János Bolyai Math. Soc., Budapest, 2013.
Google Scholar
A. Schrijver and B. Sevenster: The strong arnold property for 4-connected flat graphs, Linear Algebra and its Applications 522 (2017), 153–160.
MathSciNet
Article
Google Scholar
Z. Stanić: Regular Graphs: A Spectral Approach, De Gruyter Series in Discrete Mathematics and Applications. De Gruyter, 2017.
D. R. Stinson: Combinatorial Designs: Construction and Analysis, Springer-Verlag New York, 2004.
MATH
Google Scholar
M. Tait: The Colin de Verdière parameter, excluded minors, and the spectral radius, Journal of Combinatorial Theory, Series A 166 (2019), 42–58.
MathSciNet
Article
Google Scholar
M. Tancer and D. Tonkonog: Nerves of good covers are algorithmically unrecognizable, SIAM J. Comput. 42 (2013), 1697–1719.
MathSciNet
Article
Google Scholar
R. Thomas: Recent excluded minor theorems for graphs, in: In surveys in combinatorics, 1999, Ed. by J. D. Lamb and D. A. Preece. London Mathematical Society Lecture Note Series. Cambridge University Press, 1999, 201–222.
G. M. Ziegler: Lectures on polytopes, volume 152 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1995.
Google Scholar