B. Bollobás and A. Thomason: Highly linked graphs, Combinatorica 16 (1996), 313–320.
MathSciNet
Article
Google Scholar
P. A. Catlin: A bound on the chromatic number of a graph, Discrete Math. 22 (1978), 81–83.
MathSciNet
Article
Google Scholar
M. Chudnovsky, J. Geelen, B. Gerards, L. Goddyn, M. Lohman and P. Seymour: Packing non-zero A-paths in group-labelled graphs, Combinatorica 26 (2006), 521–532.
MathSciNet
Article
Google Scholar
P. Erdős: On some extremal problems in graph theory, Israel. J. Math. 3 (1965), 113–116.
MathSciNet
Article
Google Scholar
J. Geelen, B. Gerards, B. Reed, P. Seymour and A. Vetta: On the odd-minor variant of Hadwiger’s conjecture, J. Combin. Theory Ser. B 99 (2009), 20–29.
MathSciNet
Article
Google Scholar
H. Hadwiger: Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. Ges. Zürich 88 (1943), 133–142.
MathSciNet
MATH
Google Scholar
T. R. Jensen and B. Toft: Graph coloring problems, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication.
MATH
Google Scholar
K. Kawarabayashi: Note on coloring graphs without odd-Kk-minors, J. Combin. Theory Ser. B 99 (2009), 728–731.
MathSciNet
Article
Google Scholar
A. V. Kostochka: The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982), 37–58.
MathSciNet
MATH
Google Scholar
A. V. Kostochka: Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307–316.
MathSciNet
Article
Google Scholar
K.-i. Kawarabayashi and B. Reed: Highly parity linked graphs, Combinatorica 29 (2009), 215–225.
MathSciNet
Article
Google Scholar
K.-i. Kawarabayashi and Z.-X. Song: Some remarks on the odd Hadwiger’s conjecture, Combinatorica 27 (2007), 429–438.
MathSciNet
Article
Google Scholar
W. Mader: Existence of n-times connected subgraphs in graphs having large edge density, in: Essays from the Mathematical Seminar of the University of Hamburg, volume 37, 86–97, 1972.
Article
Google Scholar
S. Norin and Z.-X. Song: Breaking the degeneracy barrier for coloring graphs with no Kt minor, 2019. arXiv:1910.09378.
L. Postle: Halfway to Hadwiger’s Conjecture, 2019. arXiv:1911.01491.
P. Seymour: Hadwiger’s conjecture, in: Open problems in mathematics, 417–437, Springer, 2016.
A. Thomason: An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261–265.
MathSciNet
Article
Google Scholar
A. Thomason: The extremal function for complete minors, J. Combin. Theory Ser. B 81 (2001), 318–338.
MathSciNet
Article
Google Scholar
R. Thomas and P. Wollan: An improved linear edge bound for graph linkages, European J. Combin. 26 (2005), 309–324.
MathSciNet
Article
Google Scholar