P. Allen, J. Böttcher, D. Clemens, J. Hladký, D. Piguet and A. Taraz: The tree packing conjecture for trees of almost linear maximum degree, arXiv:2106.11720 (2021).
P. Allen, J. Böttcher, D. Clemens and A. Taraz: Perfectly packing graphs with bounded degeneracy and many leaves, Israel J. Math., to appear
P. Allen, J. Böttcher, H. Hàn, Y. Kohayakawa and Y. Person: Blow-up lemmas for sparse graphs, arXiv:1612.00622 (2016).
P. Allen, J. Böttcher, J. Hladký and D. Piguet: Packing degenerate graphs, Adv. Math. 354 (2019), 106739.
MathSciNet
Article
Google Scholar
J. Böttcher, J. Hladký, D. Piguet and A. Taraz: An approximate version of the tree packing conjecture, Israel J. Math. 211 (2016), 391–446.
MathSciNet
Article
Google Scholar
P. Condon, J. Kim, D. Kühn and D. Osthus: A bandwidth theorem for approximate decompositions, Proc. Lond. Math. Soc. 118 (2019), 1393–1449.
MathSciNet
Article
Google Scholar
R. A. Duke, H. Lefmann and V. Rödl: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph, SIAM J. Comput. 24 (1995), 598–620.
MathSciNet
Article
Google Scholar
S. Ehard, S. Glock and F. Joos: Pseudorandom hypergraph matchings, Combin. Probab. Comput. 29 (2020), 868–885.
MathSciNet
Article
Google Scholar
S. Ehard, S. Glock and F. Joos: A rainbow blow-up lemma for almost optimally bounded edge-colourings, Forum Math. Sigma 8 (2020), Paper No. e37, 32.
MathSciNet
Article
Google Scholar
S. Ehard and F. Joos: Decompositions of quasirandom hypergraphs into hypergraphs of bounded degree, arXiv:2011.05359 (2020).
A. Ferber, C. Lee and F. Mousset: Packing spanning graphs from separable families, Israel J. Math. 219 (2017), 959–982.
MathSciNet
Article
Google Scholar
A. Ferber and W. Samotij: Packing trees of unbounded degrees in random graphs, J. Lond. Math. Soc. 99 (2019), 653–677.
MathSciNet
Article
Google Scholar
S. Glock and F. Joos: A rainbow blow-up lemma, Random Structures Algorithms 56 (2020), 1031–1069.
MathSciNet
Article
Google Scholar
S. Glock, F. Joos, J. Kim, D. Kühn and D. Osthus: Resolution of the Oberwolfach problem, J. Eur. Math. Soc. 23 (2021), 2511–2547.
MathSciNet
Article
Google Scholar
S. Glock, D. Kühn, A. Lo and D. Osthus: The existence of designs via iterative absorption: hypergraph F-designs for arbitrary F, Mem. Amer. Math. Soc. (to appear).
F. Joos, J. Kim, D. Kühn and D. Osthus: Optimal packings of bounded degree trees, J. Eur. Math. Soc. 21 (2019), 3573–3647.
MathSciNet
Article
Google Scholar
P. Keevash: A hypergraph blow-up lemma, Random Structures Algorithms 39 (2011), no. 3, 275–376.
MathSciNet
MATH
Google Scholar
P. Keevash: The existence of designs, arXiv:1401.3665 (2014).
P. Keevash: The existence of designs II, arXiv:1802.05900 (2018).
P. Keevash and K. Staden: The generalised Oberwolfach problem, J. Combin. Theory Ser. B 152 (2022), 281–318.
MathSciNet
Article
Google Scholar
P. Keevash and K. Staden: Ringel’s tree packing conjecture in quasirandom graphs, arXiv:2004.09947 (2020).
J. Kim, Y. Kim and H. Lui: Tree decompositions of graphs without large bipartite holes, Random Structures Algorithms 57 (2020), 150–168.
MathSciNet
Article
Google Scholar
J. Kim, D. Kühn, A. Kupavskii and D. Osthus: Rainbow structures in locally bounded colourings of graphs, Random Structures Algorithms 56 (2020), 1171–1204.
MathSciNet
Article
Google Scholar
J. Kim, D. Kühn, D. Osthus and M. Tyomkyn: A blow-up lemma for approximate decompositions, Trans. Amer. Math. Soc. 371 (2019), 4655–4742.
MathSciNet
Article
Google Scholar
J. Komlós, G. N. Sárközy and E. Szemerédi: Blow-up lemma, Combinatorica 17 (1997), 109–123.
MathSciNet
Article
Google Scholar
D. Král’, B. Lidický, T. Martins and Y. Pehova: Decomposing graphs into edges and triangles, Combin. Probab. Comput. 28 (2019), 465–472.
MathSciNet
Article
Google Scholar
D. Kühn and D. Osthus: Hamilton decompositions of regular expanders: A proof of Kelly’s conjecture for large tournaments, Adv. Math. 237 (2013), 62–146.
MathSciNet
Article
Google Scholar
C. McDiarmid: On the method of bounded differences, Surveys in combinatorics, 1989 (Norwich, 1989), London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press, 1989, 148–188.
S. Messuti, V. Rödl and M. Schacht: Packing minor-closed families of graphs into complete graphs, J. Combin. Theory Ser. B 119 (2016), 245–265.
MathSciNet
Article
Google Scholar
R. Montgomery, A. Pokrovskiy and B. Sudakov: Embedding rainbow trees with applications to graph labelling and decomposition, J. Eur. Math. Soc. 22 (2020), 3101–3132.
MathSciNet
Article
Google Scholar
R. Montgomery, A. Pokrovskiy and B. Sudakov: A proof of Ringel’s Conjecture, Geom. Funct. Anal. 31 (2021), 663–720.
MathSciNet
Article
Google Scholar
V. Rödl and A. Ruciński; Perfect matchings in ϵ-regular graphs and the blow-up lemma, Combinatorica 19 (1999), 437–452.
MathSciNet
Article
Google Scholar
R. M. Wilson: An existence theory for pairwise balanced designs I. Composition theorems and morphisms, J. Combin. Theory Ser. A 13 (1972), 220–245.
MathSciNet
Article
Google Scholar
R. M. Wilson: An existence theory for pairwise balanced designs II. The structure of PBD-closed sets and the existence conjectures, J. Combin. Theory Ser. A 13 (1972), 246–273.
MathSciNet
Article
Google Scholar
R. M. Wilson: An existence theory for pairwise balanced designs III. Proof of the existence conjectures, J. Combin. Theory Ser. A 18 (1975), 71–79.
MathSciNet
Article
Google Scholar