G. Averkov and A. Basu: Lifting properties of maximal lattice-free polyhedra, Math. Program. 154 (2015), 81–111.
MathSciNet
Article
Google Scholar
G. Averkov and C. Wagner: Inequalities for the lattice width of lattice-free convex sets in the plane, Beitr. Algebra Geom. 53 (2012), 1–23.
MathSciNet
Article
Google Scholar
J. Barajas and O. Serra: On the chromatic number of circulant graphs, Discrete Math. 309 (2009), 5687–5696.
MathSciNet
Article
Google Scholar
A. Barvinok: A course in convexity, Graduate Studies in Mathematics, vol. 54, American Mathematical Society, Providence, RI, 2002.
Book
Google Scholar
M. Beck, S. Hoşten and M. Schymura: Lonely Runner Polyhedra, Integers 19 (2019), #A29.
MathSciNet
MATH
Google Scholar
T. Bohman, R. Holzman and D. Kleitman: Six lonely runners, Electron. J. Combin. 8 (2001), Research Paper 3, (electronic). In honor of Aviezri Fraenkel on the occasion of his 70th birthday.
É. Charrier, F. Feschet and L. Buzer: Computing efficiently the lattice width in any dimension, Theoret. Comput. Sci. 412 (2011), 4814–4823.
MathSciNet
Article
Google Scholar
G. Codenotti, F. Santos and M. Schymura: The covering radius and a discrete surface area for non-hollow simplices, Discrete Comput. Geom. (2021), to appear, https://arxiv.org/abs/1903.02866.
Th. W. Cusick: View-obstruction problems, Aequat. Math. 9 (1973), 165–170.
MathSciNet
Article
Google Scholar
S. Czerwiński and J. Grytczuk: Invisible runners in finite fields, Inf. Process. Lett. 108 (2008), 64–67.
MathSciNet
Article
Google Scholar
S. Dash, N. B. Dobbs, O. Günlük, T. J. Nowicki and G. M. Świrszcz: Latticefree sets, multi-branch split disjunctions, and mixed-integer programming, Math. Program. 145 (2014), 483–508.
MathSciNet
Article
Google Scholar
P. M. Gruber and C. G. Lekkerkerker: Geometry of Numbers, second ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987.
MATH
Google Scholar
I. Haviv and O. Regev: Hardness of the covering radius problem on lattices, Chic. J. Theoret. Comput. Sci. (2012), Article 4.
M. Henze and R.-D. Malikiosis: On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture, Aequat. Math. 91 (2017), 331–352.
MathSciNet
Article
Google Scholar
O. Iglesias-Valiño and F. Santos: Classification of empty lattice 4-simplices of width larger than two, Trans. Amer. Math. Soc. 371 (2019), 6605–6625.
MathSciNet
Article
Google Scholar
R. Kannan: Test sets for integer programs, ∀∃ sentences, Polyhedral Combinatorics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 1, Providence, RI, American Mathematical Society, 1990, 39–47.
MATH
Google Scholar
R. Kannan: Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), 161–177.
MathSciNet
Article
Google Scholar
R. Kannan and L. Lovász: Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128 (1988), 577–602.
MathSciNet
Article
Google Scholar
N. Kravitz: Barely lonely runners and very lonely runners, https://arxiv.org/abs/1912.06034, 2019.
H. W. Lenstra: Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983), 538–548.
MathSciNet
Article
Google Scholar
O. L. Mangasarian and T.-H. Shiau: A Variable-Complexity Norm Maximization Problem, SIAM J. Alg. Disc. Meth. 7 (1986), 455–461.
MathSciNet
Article
Google Scholar
D. Micciancio: Almost perfect lattices, the covering radius problem, and applications to Ajtai’s connection factor, SIAM J. Comput. 34 (2004), 118–169.
MathSciNet
Article
Google Scholar
D. Micciancio and S. Goldwasser: Complexity of lattice problems. A cryptographic perspective, vol. 671, Boston, MA: Kluwer Academic Publishers, 2002.
Book
Google Scholar
J. Paat, R. Weismantel and S. Weltge: Distances between optimal solutions of mixed-integer programs, Math. Program. 179 (2020), 455–468.
MathSciNet
Article
Google Scholar
M. Rudelson: Distances between non-symmetric convex bodies and the MM*-estimate, Positivity 4 (2000), 161–178.
MathSciNet
Article
Google Scholar
I. J. Schoenberg: Extremum problems for the motions of a billiard ball, II. The L∞ norm, in: Indag. Math., Nederl. Akad. Wetensch. Proc. Ser. A. 38, 263–279, 1976.
M. Schymura and J. M. Wills: Der einsame Läufer, Mitt. Dtsch. Math.-Ver. 26 (2018), 14–17.
MATH
Google Scholar
T. Tao: Some remarks on the lonely runner conjecture, Contrib. Discrete Math. 13 (2018), 1–31.
MathSciNet
MATH
Google Scholar
The Sage Developers: Sagemath, the Sage Mathematics Software System (Version 9.1), 2020, https://www.sagemath.org.
J. M. Wills: Zur simultanen homogenen diophantischen Approximation. I, Monatsh. Math. 72 (1968), 254–263.
MathSciNet
Article
Google Scholar