Persistent Graphs and Cyclic Polytope Triangulations


We prove a bijection between the triangulations of the 3-dimensional cyclic poly-tope C(n + 2, 3) and persistent graphs with n vertices. We show that under this bijection the Stasheff-Tamari orders on triangulations naturally translate to subgraph inclusion between persistent graphs. Moreover, we describe a connection to the second higher Bruhat order B(n, 2). We also give an algorithm to efficiently enumerate all persistent graphs on n vertices and thus all triangulations of C(n + 2, 3).

This is a preview of subscription content, access via your institution.


  1. [1]

    J. Abello and Ö. Egecioglu: Visibility graphs of staircase polygons with uniform step length, International Journal of Computational Geometry & Applications 3 (1993), 27–37.

    MathSciNet  Article  Google Scholar 

  2. [2]

    J. Abello, Ö. Egecioglu and K. Kumar: Visibility graphs of staircase polygons and the weak Bruhat order, I: from visibility graphs to maximal chains, Discrete & Computational Geometry 14 (1995), 331–358.

    MathSciNet  Article  Google Scholar 

  3. [3]

    S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman and Q. Wang: Terrain visibility graphs: Persistence is not enough, in: 36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of LIPIcs, 6 1–6:13, Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2020.

  4. [4]

    M. Azaola and F. Santos: The number of triangulations of the cyclic polytope c(n,n − 4), Discrete & Computational Geometry 27 (2002), 29–48.

    MathSciNet  Article  Google Scholar 

  5. [5]

    M. Breen: Primitive radon partitions for cyclic polytopes, Israel Journal of Mathematics 15 (1973), 156–157.

    MathSciNet  Article  Google Scholar 

  6. [6]

    P. Colley: Recognizing visibility graphs of unimonotone polygons, in: Proceedings of the Fourth Canadian Conference on Computational Geometry (CCCG 1992), 29–34, 1992.

  7. [7]

    T. K. Dey: On counting triangulations in d dimensions, Computational Geometry 3 (1993), 315–325.

    MathSciNet  Article  Google Scholar 

  8. [8]

    P. H. Edelman and V. Reiner: The higher stasheff-tamari posets, Mathematika 43 (1996), 127–154.

    MathSciNet  Article  Google Scholar 

  9. [9]

    W. S. Evans and N. Saeedi: On characterizing terrain visibility graphs, Journal of Computational Geometry 6 (2015), 108–141.

    MathSciNet  MATH  Google Scholar 

  10. [10]

    S. Felsner and H. Weil: Sweeps, arrangements and signotopes, Discrete Applied Mathematics 109 (2001), 67–94.

    MathSciNet  Article  Google Scholar 

  11. [11]

    V. Froese and M. Renken: A fast shortest path algorithm on terrain-like graphs, Discrete & Computational Geometry,, (2020).

  12. [12]

    V. Froese and M. Renken: Advancing through terrains, 2019, arXiv:1904.08746.

  13. [13]

    D. Gale: Neighborly and cyclic polytopes, in: Convexity, volume 7 of Proceedings of Symposia in Pure Mathematics, AMS, 1963.

  14. [14]

    G. Gutin, T. Mansour and S. Severini: A characterization of horizontal visibility graphs and combinatorics on words, Physica A: Statistical Mechanics and its Applications 390 (2011), 2421–2428.

    MathSciNet  Article  Google Scholar 

  15. [15]

    M. Joswig and L. Kastner: New counts for the number of triangulations of cyclic polytopes, in: Mathematical Software — ICMS 2018, volume 10931 of LNCS, 64–271. Springer, 2018.

  16. [16]

    M. M. Kapranov and V. A. Voevodsky: Combinatorial-geometric aspects of poly-category theory: pasting schemes and higher bruhat orders (list of results), Cahiers de Topologie et Géométrie Différentielle Catégoriques 32 (1991), 11–27.

    MathSciNet  MATH  Google Scholar 

  17. [17]

    L. Lacasa, B. Luque, F. Ballesteros, J. Luque and J. C. Nuño: From time series to complex networks: The visibility graph, Proceedings of the National Academy of Sciences 105 (2008), 4972–4975.

    MathSciNet  Article  Google Scholar 

  18. [18]

    J. A. De Loera, JÖ. Rambau and F. Santos: Triangulations: Structures for Algorithms and Applications, volume 25 of AACIM, Springer, 2010.

  19. [19]

    P. McMullen: The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179–184.

    MathSciNet  Article  Google Scholar 

  20. [20]

    J. O’Rourke and I. Streinu: Vertex-edge pseudo-visibility graphs: Characterization and recognition, in: Proceedings of the Thirteenth Annual Symposium on Computational Geometry (SoCG 1997), 119–128, Association for Computing Machinery, 1997.

  21. [21]

    S. Oppermann and H. Thomas: Triangulations of cyclic polytopes, in: 24th International Conference on Formal Power Series and Algebraic Combinatorics (FP-SAC 2012), volume AR of DMTCS Proceedings, 619–630, art. 55. Discrete Mathematics and Theoretical Computer Science, 2012.

  22. [22]

    J. Rambau: Triangulations of cyclic polytopes and higher bruhat orders, Mathematika 44 (1997), 162–194.

    MathSciNet  Article  Google Scholar 

  23. [23]

    J. Rambau and V. Reiner: A Survey of the Higher Stasheff-Tamari Orders, 351–390, Springer, 2012.

  24. [24]

    H. Thomas: New combinatorial descriptions of the triangulations of cyclic polytopes and the second higher stasheff-tamari posets, Order 19 (2002), 327–342.

    MathSciNet  Article  Google Scholar 

  25. [25]

    G. M. Ziegler: Lectures on Polytopes, Springer, 1995.

Download references


We thank Lito Goldmann for his work on enumerating persistent graphs, which led us to the discovery of the bijection. We further thank André Nichterlein for helpful initial discussions. We also thank the anonymous reviewers of Combinatorica for their valuable comments.

Author information



Corresponding author

Correspondence to Vincent Froese.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Froese, V., Renken, M. Persistent Graphs and Cyclic Polytope Triangulations. Combinatorica 41, 407–423 (2021).

Download citation

Mathematics Subject Classification (2010)

  • 05A19
  • 05C30
  • 52B05
  • 52B10
  • 52B12