F. Albiac and N. J. Kalton: Topics in Banach space theory, second ed., Graduate Texts in Mathematics, vol. 233, Springer, [Cham], 2016.
Book
Google Scholar
D. Bartošová, J. Lopez-Abad, M. Lupini and B. Mbombo: The Ramsey property for Banach spaces and Choquet simplices, and applications, C. R. Math. Acad. Sci. Paris 355 (2017), 1242–1246.
MathSciNet
Article
Google Scholar
D. Bartošová, J. Lopez-Abad, M. Lupini and B. Mbombo: The Ramsey property for Banach spaces, Choquet simplices, and their noncommutative analogs, preprint, 2017.
D. Bartošová, J. Lopez-Abad, M. Lupini and B. Mbombo: The Ramsey property for Banach spaces and Choquet simplices, Journal of the European Mathematical Society (2019), in press; arXiv:1708.01317.
M. Fabian, P. Habala, P. Hájek, V. M. Santalucía, J. Pelant and V. Zizler: Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8, Springer-Verlag, New York, 2001.
Book
Google Scholar
V. Ferenczi, J. Lopez-Abad, B. Mbombo and S. Todorcevic: Amalgamation and Ramsey properties of Lp spaces, Adv. Math. 369 (2020), 107–190.
Article
Google Scholar
T. Giordano and V. Pestov: Some extremely amenable groups related to operator algebras and ergodic theory, Journal of the Institute of Mathematics of Jussieu 6 (2007), 279–315.
MathSciNet
Article
Google Scholar
R. L. Graham, K. Leeb and B. L. Rothschild: Ramsey’s theorem for a class of categories, Proceedings of the National Academy of Sciences of the United States of America 69 (1972), 119–120.
MathSciNet
Article
Google Scholar
R. L. Graham and B. L. Rothschild: Ramsey’s theorem for n-parameter sets, Transactions of the American Mathematical Society 159 (1971).
R. L. Graham, B. L. Rothschild and J. H. Spencer: Ramsey theory, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1990, A Wiley-Interscience Publication.
MATH
Google Scholar
M. Gromov and V. D. Milman: A topological application of the isoperimetric inequality, American Journal of Mathematics 105 (1983), 843–854.
MathSciNet
Article
Google Scholar
V. I. Gurariĭ: Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Siberian Mathematical Journal 7 (1966), 1002–1013.
MathSciNet
Article
Google Scholar
N. J. Kalton and M. I. Ostrovskii: Distances between Banach spaces, Forum Mathematicum 11 (2008), 17–48.
MathSciNet
Google Scholar
A. S. Kechris, V. Pestov and S. Todorcevic: Fraïsse limits, Ramsey theory, and topological dynamics of automorphism groups, Geometric and Functional Analysis 15 (2005), 106–189.
MathSciNet
Article
Google Scholar
J. Melleray and T. Tsankov: Extremely amenable groups via continuous logic, arXiv:1404.4590 (2014).
V. D. Milman and G. Schechtman: Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986, with an appendix by M. Gromov.
MATH
Google Scholar
J. Nešetřil: Ramsey theory, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, 1331–1403.
MATH
Google Scholar
M. I. Ostrovskii: Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry, Quaestiones Math. 17 (1994), 259–319.
MathSciNet
Article
Google Scholar
V. Pestov: Dynamics of infinite-dimensional groups, University Lecture Series, vol. 40, American Mathematical Society, Providence, RI, 2006.
Book
Google Scholar
W. Rudin: Functional analysis, second ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
MATH
Google Scholar
G. Schechtman: Almost isometric Lp subspaces of Lp(0, 1), The Journal of the London Mathematical Society 20 (1979), 516–528.
MathSciNet
Article
Google Scholar
J. H. Spencer: Ramsey’s theorem for spaces, Trans. Amer. Math. Soc. 249 (1979), 363–371.
MathSciNet
MATH
Google Scholar
S. Todorcevic: Introduction to Ramsey spaces, Annals of Mathematics Studies, vol. 174, Princeton University Press, Princeton, NJ, 2010.
Book
Google Scholar