# Expanding Polynomials: A Generalization of the Elekes-Rónyai Theorem to d Variables

## Abstract

We prove the following statement. Let f ∈ ℝ[x1,…,xd], for some d ≥ 3, and assume that f depends non-trivially in each of x1,…, xd. Then one of the following holds.

1. (i)

For every finite sets A1,…, Ad ⊂ℝ, each of size n, we have

$$\left| {f\left( {{A_1} \times \ldots \times {A_d}} \right)} \right| = \Omega \left( {{n^{3/2}}} \right),$$

with constant of proportionality that depends on deg f.

2. (ii)

f is of one of the forms

$$f\left( {{x_1}, \ldots ,{x_d}} \right) = h\left( {{p_1}\left( {{x_1}} \right) + \cdots + {p_d}\left( {{x_d}} \right)} \right)$$

or

$$f\left( {{x_1}, \ldots ,{x_d}} \right) = h\left( {{p_1}\left( {{x_1}} \right) \cdot \ldots \cdot {p_d}\left( {{x_d}} \right)} \right),$$

for some univariate real polynomials h(x), pi(x),…,pd(x). This generalizes the results from [2,5,7], which treat the cases d = 2 and d = 3.

This is a preview of subscription content, access via your institution.

## References

1. 

M. Bays and E. Breuillard: Projective geometries arising from Elekes-Szabó problems, arXiv:1806.03422 (2018).

2. 

G. Elekes and L. Rónyai: A combinatorial problem on polynomials and rational functions, J. Combin. Theory, Ser. A89 (2000), 1–20.

3. 

G. Elekes and E. Szabó: How to find groups? (And how to use them in Erdós geometry?) Combinatorial32 (2012), 537–571.

4. 

T. W. Gamelin: Complex Analysis, Springer-Verlag, New York 2001.

5. 

O. E. Raz, M. Sharir and J. Solymosi: Polynomials vanishing on grids: The Elekes-Rónyai problem revisited, Amer. J. Math.138 (2016), 1029–1065.

6. 

O. E. Raz, M. Sharir and F. de Zeeuw: Polynomials vanishing on Cartesian products: The Elekes-Szabó Theorem revisited, Duke Math. J.165 (2016), 3517–3566.

7. 

O. E. Raz, M. Sharir and F. de Zeeuw: The Elekes-Szabó Theorem in four dimensions, Israel J. Math227 (2018), 663–690.

8. 

R. Schwartz, J. Solymosi and F. de Zeeuw: Extensions of a result of Elekes and Rónyai J. Combin. Theory, Ser. A120 (2013), 1695–1713.

9. 

T. Tao: Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets, Contrib. Discret. Math.10 (2015), 22–98.

## Author information

Authors

### Corresponding author

Correspondence to Orit E. Raz.

## Rights and permissions

Reprints and Permissions