Skip to main content
Log in

Large Cliques in Hypergraphs with Forbidden Substructures

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A result due to Gyárfás, Hubenko, and Solymosi (answering a question of Erdős) states that if a graph G on n vertices does not contain K2,2 as an induced subgraph yet has at least \(c\left(\begin{array}{c}n\\ 2\end{array}\right)\) edges, then G has a complete subgraph on at least \(\frac{c^2}{10}n\) vertices. In this paper we suggest a “higher-dimensional” analogue of the notion of an induced K2,2 which allows us to generalize their result to k-uniform hypergraphs. Our result also has an interesting consequence in discrete geometry. In particular, it implies that the fractional Helly theorem can be derived as a purely combinatorial consequence of the colorful Helly theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Abbott and M. Katchalski: A Turán type problem for interval graphs, Discrete Math.25 (1979), 85–88

    Article  MathSciNet  Google Scholar 

  2. N. Alon, G. Kalai, J. Matoušek and R. Meshulam: Transversal numbers for hypergraphs arising in geometry, Adv. in Appl. Math.29 (2002), 79–101.

    Article  MathSciNet  Google Scholar 

  3. N. Amenta, J. A. De Loera and P. Soberán: Helly’s theorem: new variations and applications, in: Algebraic and geometric methods in discrete mathematics, Contemp. Math. 685 (2017), 55–95.

    Article  MathSciNet  Google Scholar 

  4. I. Bárány: A generalization of Caratháeodory’s theorem, Discrete Math.40 (1982), 141–152.

    Article  MathSciNet  Google Scholar 

  5. J. Eckhoff: An upper-bound theorem for families of convex sets, Geom. Dedicata19 (1985), 217–227.

    Article  MathSciNet  Google Scholar 

  6. J. Eckhoff: Helly, Radon, and Caratháeodory Type Theorems, in: Handbook of Convex Geometry, Part A, North-Holland (1993), 389–448.

    Chapter  Google Scholar 

  7. P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar.1 (1966), 51–57.

    MathSciNet  MATH  Google Scholar 

  8. P. Erdős and A. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc.52 (1946), 1087–1091.

    Article  MathSciNet  Google Scholar 

  9. G. Fløystad: The colorful Helly theorem and colorful resolutions of ideals, J. Pure Appl. Algebra215 (2011), 1255–1262

    Article  MathSciNet  Google Scholar 

  10. Z. Füredi and M. Simonovits: The History of Degenerate (Bipartite) Extremal Graph Problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25 (2013), 169–264.

    Article  MathSciNet  Google Scholar 

  11. A. Gyárfás, A. Hubenko, and J. Solymosi: Large cliques in C4-free graphs, Combinatorica22 (2002) 269–274.

    Article  MathSciNet  Google Scholar 

  12. A. Gyárfás and G. N. Sárközy: Cliques in C4-free graphs of large minimum degree, Period. Math. Hungar.74 (2017), 73–78.

    Article  MathSciNet  Google Scholar 

  13. A. Hatcher: Algebraic Topology, Cambridge University Press, 2002.

    MATH  Google Scholar 

  14. E. Helly: Über mengen konvexer körper mit gemeinschaftlichen punkte, Jahresber. Deutsch. Math.-Verein.32 (1923), 175–176.

    MATH  Google Scholar 

  15. G. Kalai: Intersection patterns of convex sets, Israel J. Math.48 (1984), 161–174.

    Article  MathSciNet  Google Scholar 

  16. G. Kalai and R. Meshulam: A topological colorful Helly theorem, Adv. Math.191 (2005), 305–311.

    Article  MathSciNet  Google Scholar 

  17. M. Katchalski and A. Liu: A problem of geometry in ℝn, Proc. Amer. Math. Soc.75 (1979), 284–288.

    MathSciNet  MATH  Google Scholar 

  18. M. Kim: A note on the colorful fractional Helly theorem, Discrete Math.340 (2017), 3167–3170.

    Article  MathSciNet  Google Scholar 

  19. T. Kővári, V. Sás, and P. Turán: On a problem of K. Zarankiewicz, Colloquium Math.3 (1954), 50–57.

    Article  MathSciNet  Google Scholar 

  20. P.-S. Loh, M. Tait, C. Timmons, and R. M. Zhou: Induced Turán numbers, Combin. Probab. Comput.27 (2018), 274–288.

    Article  MathSciNet  Google Scholar 

  21. J. Matoušek: Lectures on Discrete Geometry, Springer GTM 212, 2002.

    Book  Google Scholar 

  22. P. Turán: On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok48 (1941), 436–452.

    MathSciNet  Google Scholar 

Download references

Acknowledgement

The author thanks Xavier Goaoc, Seunghun Lee, and two anonymous referees for pointing out some mistakes and making several other useful comments which greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Holmsen.

Additional information

Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930998).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmsen, A.F. Large Cliques in Hypergraphs with Forbidden Substructures. Combinatorica 40, 527–537 (2020). https://doi.org/10.1007/s00493-019-4169-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-019-4169-y

Mathematics Subject Classification (2010)

Navigation