On a Conjecture of Erdős on Locally Sparse Steiner Triple Systems

Abstract

A famous theorem of Kirkman says that there exists a Steiner triple system of order n if and only if n ≡ 1,3 mod 6. In 1973, Erdős conjectured that one can find so-called ‘sparse’ Steiner triple systems. Roughly speaking, the aim is to have at most j−3 triples on every set of j points, which would be best possible. (Triple systems with this sparseness property are also referred to as having high girth.) We prove this conjecture asymptotically by analysing a natural generalization of the triangle removal process. Our result also solves a problem posed by Lefmann, Phelps and Rödl as well as Ellis and Linial in a strong form, and answers a question of Krivelevich, Kwan, Loh and Sudakov. Moreover, we pose a conjecture which would generalize the Erdős conjecture to Steiner systems with arbitrary parameters and provide some evidence for this.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    N. Alon and J. H. Spencer: The probabilistic method, 3rd ed., Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, 2008.

  2. [2]

    P. Bennett and T. Bohman: A note on the random greedy independent set algorithm, Random Structures Algorithms49 (2016), 479–502.

    MathSciNet  Article  Google Scholar 

  3. [3]

    T. Bohman, A. Frieze and E. Lubetzky: Random triangle removal, Adv. Math.280 (2015), 379–438.

    MathSciNet  Article  Google Scholar 

  4. [4]

    T. Bohman and P. Keevash: The early evolution of the H-free process, Invent. Math.181 (2010), 291–336.

    MathSciNet  Article  Google Scholar 

  5. [5]

    T. Bohman and L. Warnke: Large girth approximate Steiner triple systems, J. Lond. Math. Soc.100 (2019), 895–913.

    MathSciNet  Article  Google Scholar 

  6. [6]

    A. E. Brouwer: Steiner triple systems without forbidden subconfigurations, Mathematisch Centrum Amsterdam, Tech. Report ZW 104/77, 1977.

  7. [7]

    D. Ellis and N. Linial: On regular hypergraphs of high girth, Electron. J. Combin.21 (2014), Art. 1.54.

  8. [8]

    P. Erdős: Problems and results in combinatorial analysis, in: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Accad. Naz. Lincei, 1976, 3–17.

  9. [9]

    P. Erdős: Problems and results in combinatorial analysis, Creation in Math.9 (1976).

  10. [10]

    A. D. Forbes, M. J. Grannell and T. S. Griggs: On 6-sparse Steiner triple systems, J. Combin. Theory Ser. A114 (2007), 235–252.

    MathSciNet  Article  Google Scholar 

  11. [11]

    D. A. Freedman: On tail probabilities for martingales, Ann. Probab.3 (1975), 100–118.

    MathSciNet  Article  Google Scholar 

  12. [12]

    Z. Füredi and M. Ruszinkó: Uniform hypergraphs containing no grids, Adv. Math.240 (2013), 302–324.

    MathSciNet  Article  Google Scholar 

  13. [13]

    S. Glock, D. Kühn, A. Lo and D. Osthus: The existence of designs via iterative absorption: hypergraph F-designs for arbitrary F, Memoirs Amer. Math. Soc. (to appear)

  14. [14]

    D. A. Grable: On random greedy triangle packing, Electron. J. Combin.4 (1997), Art. 11.

  15. [15]

    M. J. Grannell, T. S. Griggs and C. A. Whitehead: The resolution of the anti-Pasch conjecture, J. Combin. Des.8 (2000), 300–309.

    MathSciNet  Article  Google Scholar 

  16. [16]

    T. S. Griggs, J. Murphy and J. S. Phelan: Anti-Pasch Steiner triple systems, J. Comb. Inf. Syst. Sci.15 (1990), 79–84.

    MathSciNet  MATH  Google Scholar 

  17. [17]

    P. Keevash: The existence of designs, arXiv:1401.3665 (2014).

  18. [18]

    P. Keevash: Counting designs, J. Eur. Math. Soc.20 (2018), 903–927.

    MathSciNet  Article  Google Scholar 

  19. [19]

    T. P. Kirkman: On a problem in combinatorics, Cambridge Dublin Math. J.2 (1847), 191–204.

    Google Scholar 

  20. [20]

    M. Krivelevich, M. Kwan, P.-S. Loh and B. Sudakov: The random k-matching-free process, Random Structures Algorithms53 (2018), 692–716.

    MathSciNet  Article  Google Scholar 

  21. [21]

    D. Kühn, D. Osthus and A. Taylor: On the random greedy F-free hypergraph process, SIAM J. Discrete Math.30 (2016), 1343–1350.

    MathSciNet  Article  Google Scholar 

  22. [22]

    H. Lefmann, K. T. Phelps and V. Rödl: Extremal problems for triple systems, J. Combin. Des.1 (1993), 379–394.

    MathSciNet  Article  Google Scholar 

  23. [23]

    A. C. H. Ling, C. J. Colbourn, M. J. Grannell and T. S. Griggs: Construction techniques for anti-Pasch Steiner triple systems, J. Lond. Math. Soc.61 (2000), 641–657.

    MathSciNet  Article  Google Scholar 

  24. [24]

    N. Linial and Z. Luria: An upper bound on the number of Steiner triple systems, Random Structures Algorithms43 (2013), 399–406.

    MathSciNet  Article  Google Scholar 

  25. [25]

    D. Osthus and A. Taraz: Random maximal H-free graphs, Random Structures Algorithms18 (2001), 61–82.

    MathSciNet  Article  Google Scholar 

  26. [26]

    N. Pippenger and J. Spencer: Asymptotic behaviour of the chromatic index for hypergraphs, J. Combin. Theory Ser. A51 (1989), 24–42.

    MathSciNet  Article  Google Scholar 

  27. [27]

    V. Rödl and L. Thoma: Asymptotic packing and the random greedy algorithm, Random Structures Algorithms8 (1996), 161–177.

    MathSciNet  Article  Google Scholar 

  28. [28]

    I. Z. Ruzsa and E. Szemerédi: Triple systems with no six points carrying three triangles, Combinatorics II, Colloq. Math. Soc. János Bolyai 18, North-Holland, 1978, 939–945.

    MathSciNet  MATH  Google Scholar 

  29. [29]

    J. Spencer: Asymptotic packing via a branching process, Random Structures Algorithms7 (1995), 167–172.

    MathSciNet  Article  Google Scholar 

  30. [30]

    L. Warnke: The C-free process, Random Structures Algorithms44 (2014), 490–526.

    MathSciNet  Article  Google Scholar 

  31. [31]

    L. Warnke: When does the K4-free process stop?, Random Structures Algorithms44 (2014), 355–397.

    MathSciNet  Article  Google Scholar 

  32. [32]

    A. Wolfe: 5-sparse Steiner triple systems of order n exist for almost all admissible n, Electron. J. Combin.12 (2005), Art. 68.

Download references

Acknowledgement

We are grateful to Tom Bohman and Lutz Warnke for pointing out a minor oversight in the calculation of Egain in an earlier version of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deryk Osthus.

Additional information

The research leading to these results was partially supported by the EPSRC, grant nos. EP/N019504/1 (D. Kühn) and EP/P002420/1 (A. Lo), by the Royal Society and the Wolfson Foundation (D. Kühn) as well as by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement no. 306349 (S. Glock and D. Osthus).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Glock, S., Kühn, D., Lo, A. et al. On a Conjecture of Erdős on Locally Sparse Steiner Triple Systems. Combinatorica 40, 363–403 (2020). https://doi.org/10.1007/s00493-019-4084-2

Download citation

Mathematics Subject Classification (2010)

  • 05B07
  • 60C05
  • 05B30
  • 60G99