Subgroup Growth of Virtually Cyclic Right-Angled Coxeter Groups and Their Free Products

Abstract

We determine the asymptotic number of index n subgroups in virtually cyclic Coxeter groups and their free products as n → ∞.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. Baik, B. Petri and J. Raimbault: Subgroup growth of right-angled Artin and Coxeter groups, Preprint, arXiv:1805.03893, 2018.

    Google Scholar 

  2. [2]

    S. Basu, R. Pollack and M.-F. Roy: Algorithms in real algebraic geometry, second ed., Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2006.

    Google Scholar 

  3. [3]

    S. Chowla, I. N. Herstein and W. K. Moore: On recursions connected with symmetric groups. I, Canadian J. Math. 3 (1951), 328–334.

    MathSciNet  Article  Google Scholar 

  4. [4]

    L. Ciobanu and A. Kolpakov: Three-dimensional maps and subgroup growth, Preprint, arXiv:1712.01418, 2017.

    Google Scholar 

  5. [5]

    J. D. Dixon: The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205.

    MathSciNet  Article  Google Scholar 

  6. [6]

    P. Flajolet and R. Sedgewick: Analytic combinatorics, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  7. [7]

    B. Harris and L. Schoenfeld: The number of idempotent elements in symmetric semigroups, J. Combinatorial Theory 3 (1967), 122–135.

    MathSciNet  Article  Google Scholar 

  8. [8]

    W. K. Hayman: A generalisation of Stirling’s formula, J. Reine Angew. Math. 196 (1956), 67–95.

    MathSciNet  MATH  Google Scholar 

  9. [9]

    M. W. Liebeck and A. Shalev: Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004), 552–601.

    MathSciNet  Article  Google Scholar 

  10. [10]

    A. Lubotzky and D. Segal: Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003.

    Google Scholar 

  11. [11]

    L. Moser and M. Wyman: Asymptotic expansions, Canad. J. Math. 8 (1956), 225–233.

    MathSciNet  Article  Google Scholar 

  12. [12]

    L. Moser and M. Wyman: Asymptotic expansions. II, Canad. J. Math. 9 (1957), 194–209.

    MathSciNet  Article  Google Scholar 

  13. [13]

    T. Müller: Combinatorial aspects of finitely generated virtually free groups, J. London Math. Soc. (2) 44 (1991), 75–94.

    MathSciNet  Article  Google Scholar 

  14. [14]

    T. Müller: Subgroup growth of free products, Invent. Math. 126 (1996), 111–131.

    MathSciNet  Article  Google Scholar 

  15. [15]

    T. Müller: Finite group actions and asymptotic expansion of e P(z), Combinatorica 17 (1997), 523–554.

    MathSciNet  Article  Google Scholar 

  16. [16]

    T. W. Müller and J.-C. Puchta: Character theory of symmetric groups and subgroup growth of surface groups, J. London Math. Soc. (2) 66 (2002), 623–640.

    MathSciNet  Article  Google Scholar 

  17. [17]

    A. M. Odlyzko: Asymptotic enumeration methods, Handbook of combinatorics, Vol. 1, 2, Elsevier Sci. B. V., Amsterdam, 1995, 1063–1229.

    Google Scholar 

  18. [18]

    E. M. Wright: On the coefficients of power series having exponential singularities. II, J. London Math. Soc. 24 (1949), 304–309.

    MathSciNet  Article  Google Scholar 

  19. [19]

    E. Maitland Wright: On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), 71–79.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hyungryul Baik or Bram Petri or Jean Raimbault.

Additional information

H. B. was partially supported by Samsung Science & Technology Foundation grant No. SSTF-BA1702-01.

B. P. gratefully acknowledges support from the ERC Advanced Grant “Moduli”.

J. R. was supported by the grant ANR-16-CE40-0022-01 - AGIRA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baik, H., Petri, B. & Raimbault, J. Subgroup Growth of Virtually Cyclic Right-Angled Coxeter Groups and Their Free Products. Combinatorica 39, 779–811 (2019). https://doi.org/10.1007/s00493-019-4023-2

Download citation

Mathematics Subject Classification (2010)

  • 20F55
  • 20E07
  • 05A15