Counterexample to an Extension of the Hanani-Tutte Theorem on the Surface of Genus 4

Abstract

We find a graph of genus 5 and its drawing on the orientable surface of genus 4 with every pair of independent edges crossing an even number of times. This shows that the strong Hanani–Tutte theorem cannot be extended to the orientable surface of genus 4. As a base step in the construction we use a counterexample to an extension of the unified Hanani–Tutte theorem on the torus.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs: Additivity of the genus of a graph, Bull. Amer. Math. Soc.68 (1962), 565–568.

    MathSciNet  Article  Google Scholar 

  2. [2]

    G. Cairns and Y. Nikolayevsky: Bounds for generalized thrackles, Discrete Comput. Geam.23(2) (2000), 191–206.

    MathSciNet  Article  Google Scholar 

  3. [3]

    É. Colin de Verdière, V. Kaluža, P. Paták, Z. Patáková and M. Tancer: A direct proof of the strong Hanani-Tutte theorem on the projective plane, J. Graph Algorithms Appl.21(5) (2017), 939–981.

    MathSciNet  Article  Google Scholar 

  4. [4]

    R. Fulek and J. Kynčl: The ℤ2-genus of Kuratowski minors, Proceedings of the 34th International Symposium on Computational Geometry (SoCG 2018), Leibniz International Proceedings in Informatics (LIPIcs) 99, 40:1–10:14, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

    MathSciNet  Google Scholar 

  5. [5]

    R. Fulek, J. Kynčl and D. Pálvölgyi: Unified Hanani-Tutte theorem. Electron. J. Combin.24(3) (2017), P3.18, 8 pp.

    Google Scholar 

  6. [6]

    J. F. Geelen, R. B. Richter and G. Salazar: Embedding grids in surfaces, European J. Combin.25(6) (2004), 785–792.

    MathSciNet  Article  Google Scholar 

  7. [7]

    H. Hanani: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume, Fundamenta Mathematicae23 (1934), 135–142.

    Article  Google Scholar 

  8. [8]

    B. Mohar: Combinatorial local planarity and the width of graph embeddings, Canad. J. Math.44(6) (1992), 1272–1288.

    MathSciNet  Article  Google Scholar 

  9. [9]

    B. Mohar and C. Thomassen: Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (2001), ISBN 0-8018-6689-8.

    Google Scholar 

  10. [10]

    J. Pach and G. Tóth: Which crossing number is it anyway?, J. Combin. Theory Ser. B80(2) (2000), 225–246.

    MathSciNet  Article  Google Scholar 

  11. [11]

    M. J. Pelsmajer, M. Schaefer and D. Stasi: Strong Hanani-Tutte on the projective plane. SiamJ. Discrete Math.23(3) (2009), 1317–1323.

    MathSciNet  Article  Google Scholar 

  12. [12]

    M. J. Pelsmajer, M. Schaefer and D. štefankovič: Removing even crossings, J. Combin. Theory Ser. B97(4) (2007), 480–500.

    MathSciNet  Article  Google Scholar 

  13. [13]

    M. J. Pelsmajer, M. Schaefer and D. štefankovič: Removing even crossings on surfaces. European J. Combin.30(7) (2009), 1704–1717.

    MathSciNet  Article  Google Scholar 

  14. [14]

    N. Robertson and P. D. Seymour: Graph minors. VIII. A Kuratowski theorem for general surfaces, J. Combin. Theory Ser. B48(2) (1990), 255–288.

    MathSciNet  Article  Google Scholar 

  15. [15]

    M. Schaefer: Hanani-Tutte and related results, Geometry–Intuitive, Discrete, and Convex, vol. 24 of Bolyai Soc. Math. Stud., 259–299, János Bolyai Math. Soc, Budapest (2013).

    Google Scholar 

  16. [16]

    M. Schaefer: The graph crossing number and its variants: A survey, Electron. J. Combin., Dynamic Survey 21 (2017).

    Google Scholar 

  17. [17]

    M. Schaefer and D. štefankovič: Block additivity of ℤ2-embeddings, in: (Wismath S., Wolff A. eds) Graph Drawing. GD 2013. Lecture Notes in Computer Science, vol 8242. Springer, Cham, 2013.

    Google Scholar 

  18. [18]

    C. Thomassen: A simpler proof of the excluded minor theorem for higher surfaces, J. Combin. Theory Ser. B70(2) (1997), 306–311.

    MathSciNet  Article  Google Scholar 

  19. [19]

    W. T. Tutte: Toward a theory of crossing numbers, J. Combinatorial Theory8 (1970), 45–53.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Radoslav Fulek.

Additional information

Supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no [291734] and by Austrian Science Fund (FWF): M2281-N35.

Supported by project 16-01602Y of the Czech Science Foundation (GAČR) and by Charles University project UNCE/SCI/004.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fulek, R., Kynčl, J. Counterexample to an Extension of the Hanani-Tutte Theorem on the Surface of Genus 4. Combinatorica 39, 1267–1279 (2019). https://doi.org/10.1007/s00493-019-3905-7

Download citation

Mathematics Subject Classification (2010)

  • 05C10
  • 57M15