Tverberg Partitions as Weak Epsilon-Nets

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon, I. Bárány, Z. Füredi and D. J. Kleitman: Point selections and weak ɛ-nets for convex hulls, Combin. Probab. Comput. 1 (1992), 189–200.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    N. Alon and J. H. Spencer: The probabilistic method, fourth ed., Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016.

    Google Scholar 

  3. [3]

    K. Azuma: Weighted sums of certain dependent random variables, Tôhoku Math. J. 19 (1967), 357–367.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    I. Bárány: A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982), 141–152.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    I. Bárány: Tensors, colours, octahedra, Geometry, structure and randomness in com-binatorics, CRM Series, vol. 18, Ed. Norm., Pisa, 2015, 1–17.

    Google Scholar 

  6. [6]

    P. V. M. Blagojević, F. Frick and G. M. Ziegler: Tverberg plus constraints, Bull. Lond. Math. Soc. 46 (2014), 953–967.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    I. Bárány and D. G. Larman: A Colored Version of Tverberg’s Theorem, J. London Math. Soc. s2-45 (1992), 314–320.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    B. Bukh, J. Matoušek and G. Nivasch: Lower bounds for weak epsilon-nets and stair-convexity, Israel J. Math. 182 (2011), 199–228.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    P.V.M. Blagojević, B. Matschke and G. M. Ziegler: Optimal bounds for a colorful Tverberg-Vrećica type problem, Adv. Math. 226 (2011), 5198–5215.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    P. V. M. Blagojević, B. Matschke and G. M. Ziegler: Optimal bounds for the colored Tverberg problem, J. Eur. Math. Soc. (JEMS) 17 (2015), 739–754.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    I. Bárány and S. Onn: Colourful linear programming and its relatives, Math. Oper. Res. 22 (1997), 550–567.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    I. Bárány and P. Soberón: Tverberg plus minus, Discrete Comput. Geom. 60 (2018), 588–598.

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    I. Bárány and P. Soberón: Tverberg’s theorem is 50 years old: a survey, Bull. Amer. Math. Soc. 55 (2018), 459–492.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, M. Sharir and E. Welzl: Improved bounds on weak e-nets for convex sets, Discrete Comput. Geom. 13 (1995), 1–15.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant and S.-H. Teng: Approximating center points with iterative Radon points, Internat. J. Comput. Geom. Appl. 6 (1996), 357–377, ACM Symposium on Computational Geometry (San Diego, CA, 1993).

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    N. García-Colín, M. Raggi and E. Roldán-Pensado: A note on the tolerant Tverberg theorem, Discrete Comput. Geom. 58 (2017), 746–754.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    W. Hoeffding: Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    D. G. Larman: On Sets Projectively Equivalent to the Vertices of a Convex Polytope, Bull. Lond. Math. Soc. 4 (1972), 6–12.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    J. Matoušek: Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, 2002.

    Book  Google Scholar 

  20. [20]

    W. Mulzer and Y. Stein: Algorithms for tolerant Tverberg partitions, Internat. J. Comput. Geom. Appl. 24 (2014), 261–273.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    J. Matoušek and U. Wagner: New constructions of weak e-nets, Discrete Comput. Geom. 32 (2004), 195–206.

    MathSciNet  MATH  Google Scholar 

  22. [22]

    K. S. Sarkaria: Tverberg’s theorem via number fields, Israel J. Math. 79 (1992), 317–320.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    P. Soberón: Equal coefficients and tolerance in coloured tverberg partitions, Combinatorica 35 (2015), 235–252.

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    P. Soberón: Robust Tverberg and Colourful Carathéodory results via Random Choice, Combinatorics, Probability and Computing 27 (2018), 427–440.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    P. Soberón and R. Strausz: A generalisation of Tverberg’s theorem, Discrete Comput. Geom. 47 (2012), 455–460.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    H. Tverberg: A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966), 123–128.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Soberón.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soberón, P. Tverberg Partitions as Weak Epsilon-Nets. Combinatorica 39, 447–458 (2019). https://doi.org/10.1007/s00493-018-3912-0

Download citation

Mathematics Subject Classification (2010)

  • 52A35
  • 05D40