This is a preview of subscription content, access via your institution.
References
- [1]
A. Benjamin, B. Chen and K. Kindred: Sums of Evenly Spaced Binomial Coefficients, Mathematics Magazine 83 (2010), 370–373.
- [2]
B. Bollobás: Combinatorics, Cambridge University Press, Cambridge, 1986, Set systems, hypergraphs, families of vectors and combinatorial probability.
- [3]
P. Diaconis: Random walks on groups: characters and geometry, London Mathematical Society Lecture Note Series, vol. 1, 120-142, Cambridge University Press, 2003.
- [4]
D. Dzindzalieta, T. Juškevičius and M. Šileikis: Optimal probability inequalities for random walks related to problems in extremal combinatorics, SIAM J. Discrete Math. 26 (2012), 828–837.
- [5]
P. Erdős: On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898–902.
- [6]
J. R. Griggs: On the distribution of sums of residues, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 329–333.
- [7]
D. J. Kleitman: On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors, Advances in Math. 5 (1970), 155–157.
- [8]
D. A. Levin, Y. Peres and E. L. Wilmer: Markov chains and mixing times, American Mathematical Society, 2006.
- [9]
J. E. Littlewood and A. C. Offord: On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sbornik] N.S. 12 (1943), 277–286.
- [10]
P. H. Tiep and V. H. Vu: Non-abelian Littlewood-Offord inequalities, Advances in Mathematics 302 (2016), 1233–1250.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Juškevičius, T., Šemetulskis, G. Optimal Littlewood-Offord Inequalities in Groups. Combinatorica 39, 911–921 (2019). https://doi.org/10.1007/s00493-018-3845-7
Received:
Revised:
Published:
Issue Date:
Mathematics Subject Classification (2010)
- 05D40
- 60B15