List Supermodular Coloring with Shorter Lists


In 1995, Galvin proved that a bipartite graph G admits a list edge coloring if every edge is assigned a color list of length Δ(G) the maximum degree of the graph. This result was improved by Borodin, Kostochka and Woodall, who proved that G still admits a list edge coloring if every edge e=st is assigned a list of max{dG(s);dG(t)} colors. Recently, Iwata and Yokoi provided the list supermodular coloring theorem that extends Galvin's result to the setting of Schrijver's supermodular coloring. This paper provides a common generalization of these two extensions of Galvin's result.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Bárász, J. Becker and A. Frank: An algorithm for source location in directed graphs, Operations Research Letters 33 (2005), 221–230.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    O. V. Borodin, A. V. Kostochka and D. R. Woodall: List edge and list total colourings of multigraphs, Journal of combinatorial theory, Series B 71 (1997), 184–204.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    A. Frank: Connections in Combinatorial Optimization, Oxford Lecture Series in Mathematics and its Applications, 38, Oxford University Press, Oxford, 2011.

    MATH  Google Scholar 

  4. [4]

    A. Frank and T. Király: A survey on covering supermodular functions, Research Trends in Combinatorial Optimization (W. J. Cook, L. Lovász, and J. Vygen, eds.), Springer-Verlag, 2009, 87–126.

    Google Scholar 

  5. [5]

    F. Galvin: The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory, Series B 63 (1995), 153–158.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    S. Iwata and Y. Yokoi: List supermodular coloring, Combinatorica, to appear.

  7. [7]

    D. Kőnig: Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian; Graphs and their application to the theory of determinants and sets), Mathematikai és Természettudományi Értesitő 34 (1916), 104–119.

    MATH  Google Scholar 

  8. [8]

    A. Schrijver: Supermodular colourings, Matroid Theory (L. Lovász and A. Recski, eds.), North-Holland, Amsterdam, 1985, 327–343.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yu Yokoi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yokoi, Y. List Supermodular Coloring with Shorter Lists. Combinatorica 39, 459–475 (2019).

Download citation

Mathematics Subject Classification (2010)

  • 05C15
  • 68R05