Advertisement

List Supermodular Coloring with Shorter Lists

  • Yu Yokoi
Article
  • 38 Downloads

Abstract

In 1995, Galvin proved that a bipartite graph G admits a list edge coloring if every edge is assigned a color list of length Δ(G) the maximum degree of the graph. This result was improved by Borodin, Kostochka and Woodall, who proved that G still admits a list edge coloring if every edge e=st is assigned a list of max{d G (s);d G (t)} colors. Recently, Iwata and Yokoi provided the list supermodular coloring theorem that extends Galvin's result to the setting of Schrijver's supermodular coloring. This paper provides a common generalization of these two extensions of Galvin's result.

Mathematics Subject Classification (2010)

05C15 68R05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bárász, J. Becker and A. Frank: An algorithm for source location in directed graphs, Operations Research Letters 33 (2005), 221–230.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    O. V. Borodin, A. V. Kostochka and D. R. Woodall: List edge and list total colourings of multigraphs, Journal of combinatorial theory, Series B 71 (1997), 184–204.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Frank: Connections in Combinatorial Optimization, Oxford Lecture Series in Mathematics and its Applications, 38, Oxford University Press, Oxford, 2011.zbMATHGoogle Scholar
  4. [4]
    A. Frank and T. Király: A survey on covering supermodular functions, Research Trends in Combinatorial Optimization (W. J. Cook, L. Lovász, and J. Vygen, eds.), Springer-Verlag, 2009, 87–126.CrossRefGoogle Scholar
  5. [5]
    F. Galvin: The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory, Series B 63 (1995), 153–158.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Iwata and Y. Yokoi: List supermodular coloring, Combinatorica, to appear.Google Scholar
  7. [7]
    D. Kőnig: Graphok és alkalmazásuk a determinánsok és a halmazok elméletére (Hungarian; Graphs and their application to the theory of determinants and sets), Mathematikai és Természettudományi Értesitő 34 (1916), 104–119.zbMATHGoogle Scholar
  8. [8]
    A. Schrijver: Supermodular colourings, Matroid Theory (L. Lovász and A. Recski, eds.), North-Holland, Amsterdam, 1985, 327–343.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations