Abstract
We show that any graph that is generically globally rigid in ℝd has a realization in ℝd that is both generic and universally rigid. This also implies that the graph also must have a realization in ℝd that is both infinitesimally rigid and universally rigid; such a realization serves as a certificate of generic global rigidity.
Our approach involves an algorithm by Lovász, Saks and Schrijver that, for a sufficiently connected graph, constructs a general position orthogonal representation of the vertices, and a result of Alfakih that shows how this representation leads to a stress matrix and a universally rigid framework of the graph.
This is a preview of subscription content, access via your institution.
References
- [1]
A. Y. Alfakih: Graph connectivity and universal rigidity of bar frameworks, Discrete Appl. Math.217 (part 3) (2017), 707–710.
- [2]
A. Y. Alfakih and Y. Ye: On affine motions and bar frameworks in general position, Linear Algebra Appl.438 (2013), 31–36.
- [3]
A. Y. Alfakih, A. Khandani and H. Wolkowicz: Solving Euclidean distance matrix completion problems via semidefinite programming, Comput. Optim. Appl.12 (1999), 13–30. (Computational optimization — a tribute to Olvi Mangasarian, Part I.)
- [4]
L. Asimow and B. Roth: The rigidity of graphs, Trans. Amer. Math. Soc.245 (1978), 279–289.
- [5]
L. Asimow and B. Roth: The rigidity of graphs, II, Journal of Mathematical Analysis and Applications68 (1979), 171–190.
- [6]
S. Basu, R. Pollack and M.-F. Roy: Algorithms in real algebraic geometry, volume 10 of Algorithms and Computation in Mathematics, Springer-Verlag, Berlin, second edition, 2006.
- [7]
A. R. Berg and T. Jordán: A proof of Connelly’s conjecture on 3-connected circuits of the rigidity matroid, J. Combin. Theory Ser. B88 (2003), 77–97.
- [8]
J. Bochnak, M. Coste and M.-F. Roy: Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1998.
- [9]
R. Connelly: Rigidity and energy, Invent. Math.66 (1982), 11–33.
- [10]
R. Connelly: On generic global rigidity, in: Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 147–155, Amer. Math. Soc., Providence, RI, 1991.
- [11]
R. Connelly: Generic global rigidity, Discrete Comput. Geom.33 (2005), 549–563.
- [12]
R. Connelly and A. Back: Mathematics and tensegrity: Group and representation theory make it possible to form a complete catalogue of “strut-cable” constructions with prescribed symmetries, American Scientist86 (1998), 142–151.
- [13]
R. Connelly and S. J. Gortler: Universal rigidity of complete bipartite graphs, Discrete Comput. Geom.57 (2017), 281–304.
- [14]
R. Connelly and W. J. Whiteley: Global rigidity: the effect of coning, Discrete Comput. Geom.43 (2010), 717–735.
- [15]
R. Connelly, S. J. Gortler and L. Theran: Generic global and universal rigidity, preprint, 2016, arXiv: 1604.07475v2.
- [16]
D. Eisenbud: Linear sections of determinantal varieties, Amer. J. Math.110 (1988), 541–575.
- [17]
M. Giusti and M. Merle: Singularités isolées et sections planes de variétés déterminantielles. II. Sections de variétés déterminantielles par les plans de coordonnées, in: Algebraic geometry (La Rábida, 1981), volume 961 of Lecture Notes in Math., 103–118, Springer, Berlin, 1982. [Isolated singularities and plane sections of determinantal varieties. II. Sections of determinantal varieties by the coordinate planes].
- [18]
S. J. Gortler and D. P. Thurston: Characterizing the universal rigidity of generic frameworks, Discrete Comput. Geom.51 (2014), 1017–1036.
- [19]
S. J. Gortler and D. P. Thurston: Generic global rigidity in complex and pseudo-Euclidean spaces, in: Rigidity and symmetry, volume 70 of Fields Inst. Commun., 131–154, Springer, New York, 2014.
- [20]
S. J. Gortler, A. D. Healy and D. P. Thurston: Characterizing generic global rigidity. Amer. J. Math.132 (2010), 897–939.
- [21]
B. Hendrickson: Conditions for unique graph realizations, SIAM J. Comput.21 (1992), 65–84.
- [22]
B. Hendrickson: The molecule problem: exploiting structure in global optimization, SIAM J. Optim.5 (1995), 835–857.
- [23]
J. Herzog, A. Macchia, S. S. Madani and V. Welker: On the ideal of orthogonal representations of a graph in ℝ2, Advances in Applied Mathematics71 (2015), 146–173.
- [24]
B. Jackson and T. Jordán: Connected rigidity matroids and unique realizations of graphs, J. Combin. Theory Ser. B94 (2005), 1–29.
- [25]
M. Jacobs: Connecting global and universal rigidity, preprint, 2010, arXiv:1011.4122.
- [26]
C. R. Johnson and P. Tarazaga: Connections between the real positive semidefinite and distance matrix completion problems, Linear Algebra Appl.223/224 (1995), 375–391. (Special issue honoring Miroslav Fiedler and Vlastimil Pták.)
- [27]
T. Jordán and V.-H. Nguyen: On universally rigid frameworks on the line, Contrib. Discrete Math.10 (2015), 10–21.
- [28]
T. Jordán and Z. Szabadka: Operations preserving the global rigidity of graphs and frameworks in the plane, Comput. Geom.42 (2009), 511–521.
- [29]
L. Liberti, C. Lavor, N. Maculan and A. Mucherino: Euclidean distance geometry and applications, SIAM Rev.56 (2014), 3–69.
- [30]
N. Linial: Finite metric-spaces—combinatorics, geometry and algorithms, in: Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), 573–586, Higher Ed. Press, Beijing, 2002, arXiv: math/0304466.
- [31]
N. Linial, E. London and Y. Rabinovich: The geometry of graphs and some of its algorithmic applications, Combinatorica15 (1995), 215–245.
- [32]
L. Lovász, M. Saks and A. Schrijver: Orthogonal representations and connectivity of graphs, Linear Algebra Appl.114/115 (1989), 439–454. (See also, [33].)
- [33]
L. Lovász, M. Saks and A. Schrijver: A correction: “Orthogonal representations and connectivity of graphs”, Linear Algebra Appl.313 (2000), 101–105.
- [34]
J. Matoušek: Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2002.
- [35]
F. A. Potra and S. J. Wright: Interior-point methods, J. Comput. Appl. Math.124 (2000), 281–302. Numerical analysis 2000, Vol. IV, Optimization and nonlinear equations.
- [36]
J. B. Saxe: Embeddability of weighted graphs in k-space is strongly NP-hard, in: Proc. 17th Allerton Conf. in Communications, Control, and Computing, 480–489, 1979.
- [37]
I. J. Schoenberg: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert” [MR1503246], Ann. of Math. (2), 36 (1935), 724–732.
- [38]
A. M.-C. So and Y. Ye: Theory of semidefinite programming for sensor network localization, Math. Program., Ser. B.109 (2007), 367–384.
- [39]
J. Stasica: Smooth points of a semialgebraic set, in: Annales Polonici Mathematici, volume 82, 149–153, Instytut Matematyczny Polskiej Akademii Nauk, 2003.
- [40]
The Stacks Project Authors: Stacks Project, http://stacks.math.columbia.edu, 2018.
- [41]
L. Vandenberghe and S. Boyd: Semidefinite programming, SIAM Rev.38 (1996), 49–95.
- [42]
D. Veenendaal and P. Block: An overview and comparison of structural form finding methods for general networks, International Journal of Solids and Structures49 (2012), 3741–3753.
- [43]
H. Whitney: Elementary structure of real algebraic varieties. Ann. of Math. (2)66 (1957), 545–556.
- [44]
Z. Zhu, A. M.-C. So and Y. Ye: Universal rigidity and edge sparsification for sensor network localization. SIAM J. Optim.20 (2010), 3059–3081.
Author information
Affiliations
Corresponding author
Additional information
An earlier version of this paper [15] had the title “Generic global and universal rigidity”.
Partially supported by NSF grant DMS-1564493.
Partially supported by NSF grant DMS-1564473.
Rights and permissions
About this article
Cite this article
Connelly, R., Gortler, S.J. & Theran, L. Generically Globally Rigid Graphs Have Generic Universally Rigid Frameworks. Combinatorica 40, 1–37 (2020). https://doi.org/10.1007/s00493-018-3694-4
Received:
Revised:
Published:
Issue Date:
Mathematics Subject Classification (2010)
- 52C25
- 05C62