Ramsey Graphs Induce Subgraphs of Many Different Sizes

Abstract

A graph on n vertices is said to be C-Ramsey if every clique or independent set of the graph has size at most C logn. The only known constructions of Ramsey graphs are probabilistic in nature, and it is generally believed that such graphs possess many of the same properties as dense random graphs. Here, we demonstrate one such property: for any fixed C > 0, every C-Ramsey graph on n vertices induces subgraphs of at least n2-o(1) distinct sizes. This near-optimal result is closely related to two unresolved conjectures, the first due to Erdős and McKay and the second due to Erdős, Faudree and Sós, both from 1992.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon, J. Balogh, A. Kostochka and W. Samotij: Sizes of induced subgraphs of Ramsey graphs, Combin. Probab. Comput. 18 (2009), 459–476.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    N. Alon and A. Kostochka: Induced subgraphs with distinct sizes, Random Structures Algorithms 34 (2009), 45–53.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    N. Alon, M. Krivelevich and B. Sudakov: Induced subgraphs of prescribed size, J. Graph Theory 43 (2003), 239–251.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    N. Alon and J. H. Spencer: The probabilistic method, 3rd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008.

    Book  MATH  Google Scholar 

  5. [5]

    B. Barak, A. Rao, T. Shaltiel and A. Wigderson: 2-source dispersers for no(1) entropy, and Ramsey graphs beating the Frankl-Wilson construction, Ann. of Math. 176 (2012), 1483–1543.

    MATH  Google Scholar 

  6. [6]

    B. Bukh and B. Sudakov: Induced subgraphs of Ramsey graphs with many distinct degrees, J. Combin. Theory Ser. B 97 (2007), 612–619.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    P. Erdős: Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    P. Erdős and G. Szekeres: A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470.

    MathSciNet  MATH  Google Scholar 

  9. [9]

    P. Erdős: Some of my favourite problems in various branches of combinatorics, Matematiche (Catania) 47 (1992), 231–240.

    MathSciNet  MATH  Google Scholar 

  10. [10]

    P. Erdős: Some recent problems and results in graph theory, Discrete Math. 164 (1997), 81–85.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    P. Erdős and A. Szemerédi: On a Ramsey type theorem, Period. Math. Hungar. 2 (1972), 295–299.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    P. Frankl and R. M. Wilson: Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357–368.

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    W. Hoeffding: Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    H. J. Prömel and V. Rödl: Non-Ramsey graphs are c logn-universal, J. Combin. Theory Ser. A 88 (1999), 379–384.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    F. P. Ramsey: On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    S. Shelah: Erdős and Rényi conjecture, J. Combin. Theory Ser. A 82 (1998), 179–185.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bhargav Narayanan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayanan, B., Sahasrabudhe, J. & Tomon, I. Ramsey Graphs Induce Subgraphs of Many Different Sizes. Combinatorica 39, 215–237 (2019). https://doi.org/10.1007/s00493-017-3755-0

Download citation

Mathematics Subject Classification (2010)

  • 05D10
  • 05C35