The Probability of Generating the Symmetric Group

Abstract

We consider the probability p(Sn) that a pair of random permutations generates either the alternating group An or the symmetric group Sn. Dixon (1969) proved that p(Sn) approaches 1 as n→∞ and conjectured that p(Sn) = 1 − 1/n+o(1/n). This conjecture was verified by Babai (1989), using the Classification of Finite Simple Groups. We give an elementary proof of this result; specifically we show that p(Sn) = 1 − 1/n+O(n−2+ε). Our proof is based on character theory and character estimates, including recent work by Schlage-Puchta (2012).

This is a preview of subscription content, log in to check access.

References

  1. [1]

    L. Babai: The probability of generating the symmetric group, J. Combin. Theory Ser. A 52 (1989), 148–153.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J. Bovey: The probability that some power of a permutation has small degree, Bull. Lond. Math. Soc. 12 (1980), 47–51.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    J. Bovey and A. Williamson: The probability of generating the symmetric group, Bull. Lond. Math. Soc. 10 (1978), 91–96.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    C. W. Curtis and I. Reiner: Methods of Representation Theory, Volume I, Wiley, New York (1990).

    Google Scholar 

  5. [5]

    J. D. Dixon: Asymptotics of generating the symmetric and alternating groups, Electron. J. Combin. 12 (2005), Research Paper #R56.

  6. [6]

    J. D. Dixon: The probability of generating the symmetric group, Math. Z. 110 (1969), 199–205.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    J. D. Dixon and B. Mortimer: Permutation Groups, Springer, New York (1996).

    Google Scholar 

  8. [8]

    S. Eberhard, K. Ford and D. Koukoulopoulos: Permutations contained in transitive subgroups, Discrete Analysis 12 (2016).

  9. [9]

    S. Eberhard: The trivial lower bound for the girth of S n, arXiv:1706.09972 (2017).

    Google Scholar 

  10. [10]

    J. S. Frame, G. de B. Robinson and R. M. Thrall: The hook graphs of the symmetric group, Canad. J. Math. 6 (1954), 316–324.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers, Clarendon, Oxford (1954).

    Google Scholar 

  12. [12]

    A. Kerber: Algebraic Combinatorics Via Finite Group Actions, BI-Wissenschaftsverlag, Mannheim-Wien-Zürich (1991).

    Google Scholar 

  13. [13]

    E. Manstavičius and R. Petuchovas: Permutations without long or short cycles, Electron. Notes Discrete Math. 49 (2015), 153–158.

    Article  MATH  Google Scholar 

  14. [14]

    T. W. Müller and J.-C. Schlage-Puchta: Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks, Adv. Math. 213 (2007), 919–982.

    MATH  Google Scholar 

  15. [15]

    T. Nakayama: On some modular properties of irreducible representations of a symmetric group, I, Jap. J. Math. 17 (1940), 165–184.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    E. Netto: The Theory of Substitutions and its Applications to Algebra, The Inland Press, Ann Arbor (1892).

    Google Scholar 

  17. [17]

    R. Petuchovas: Asymptotic analysis of the cyclic structure of permutations, arXiv:1611.02934 (2016), 1–77.

    Google Scholar 

  18. [18]

    B. E. Sagan: The Symmetric Group, Springer, New York (2001).

    Google Scholar 

  19. [19]

    J.-C. Schlage-Puchta: Applications of character estimates to statistical problems for the symmetric group, Combinatorica 32 (2012), 309–323.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    N. J. A. Sloane: The On-Line Encyclopedia of Integer Sequences, http://oeis.org, Sequence A113869.

  21. [21]

    H. Wielandt: Finite Permutation Groups, Academic Press, New York (1964).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sean Eberhard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eberhard, S., Virchow, S. The Probability of Generating the Symmetric Group. Combinatorica 39, 273–288 (2019). https://doi.org/10.1007/s00493-017-3629-5

Download citation

Mathematics Subject Classification (2000)

  • 20B30
  • 20C15