Minimal Normal Graph Covers

This is a preview of subscription content, access via your institution.

References

  1. [1]

    I. Csiszár and J. Körner: Information theory, Cambridge University Press, second edition, 2011.

    Google Scholar 

  2. [2]

    I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simonyi: Entropy splitting for antiblocking corners and perfect graphs, Combinatorica 10 (1990), 27–40.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    C. De Simone and J. Körner: On the odd cycles of normal graphs, Discrete Appl. Math. 94 (1999), 161–169.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    E. Fachini and J. Körner: Cross-intersecting couples of graphs, J. Graph Theory 56 (2007), 105–112.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    A. Harutyunyan, L. Pastor and S. Thomasse: Disproving the normal graph conjecture, 2015, Preprint, arXiv:1508.05487.

    Google Scholar 

  6. [6]

    J. Körner: An extension of the class of perfect graphs, Studia Sci. Math. Hungar. 8 (1973), 405–409.

    MathSciNet  MATH  Google Scholar 

  7. [7]

    J. Körner and G. Longo: Two-step encoding for finite sources, IEEE Trans. Inf. Theor. 19 (2006), 778–782.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    J. Körner, G. Simonyi and Z. Tuza: Perfect couples of graphs, Combinatorica 12 (1992), 179–192.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253–267.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    I. E. Zverovich and V. E. Zverovich: Basic perfect graphs and their extensions, Discrete Math. 293 (2005), 291–311.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Gajser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gajser, D., Mohar, B. Minimal Normal Graph Covers. Combinatorica 38, 1415–1436 (2018). https://doi.org/10.1007/s00493-017-3559-2

Download citation

Mathematics Subject Classification (2000)

  • 05C35
  • 05C69
  • 05C70