Castelnuovo-Mumford Regularity of Graphs

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Adamaszek: Splittings of independence complexes and the powers of cycles, Journal of Combinatorial Theory Series A 119 (2012), 1031–1047.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    D. Attali, A. Lieutier and D. Salinas: Efficient data structure for representing and simplifying simplicial complexes in high dimensions, International Journal of Computational Geometry and Applications 22 (2012), 279–303.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    T. Biyikoğlu and Y. Civan: Four-cycled graphs with topological applications, Annals of Combinatorics 16 (2012), 37–56.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    T. Biyikoğlu and Y. Civan: Bounding Castelnuovo-Mumford regularity of graphs via Lozin’s operations, unpublished manuscript, available at arXiv:1302.3064, 2013.

    Google Scholar 

  5. [5]

    T. Biyikoğlu and Y. Civan: Vertex-decomposable graphs, codismantlability, Cohen-Macaulayness, and Castelnuovo-Mumford regularity, Electronic Journal of Combinatorics, 21(1):#P1, 2014.

    Google Scholar 

  6. [6]

    T. Biyikoğlu and Y. Civan: Castelnuovo-Mumford regularity of graphs, available at arXiv:1503.06018(v1), 43pp, 2015.

    Google Scholar 

  7. [7]

    A. Brandstädt, V. B. Le and J. P. Spinrad: Graph Classes, A Survey, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.

    Google Scholar 

  8. [8]

    P. Csorba: Subdivision yields Alexander duality on independence complexes, Electronic Journal of Combinatorics, 16(2):#R11, 2009.

    Google Scholar 

  9. [9]

    H. Dao, C. Huneke and J. Schweig: Bounds on the regularity and projective dimension of ideals associated to graphs, Journal of Algebraic Combinatorics 38 (2013), 37–55.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    R. Ehrenborg and G. Hetyei: The topology of the independence complex, European Journal of Combinatorics 27 (2006), 906–923.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    A. Engström: Complexes of directed trees and independence complexes, Discrete Mathematics 309 (2009), 3299–3309.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    A. Hatcher: Algebraic Topology, Cambridge University Press, New York, 2006.

    Google Scholar 

  13. [13]

    H. T. Hà: Regularity of squarefree monomial ideals, in: S. M. Cooper and S. Sather Wagstaff, editors, Connections Between Algebra, Combinatorics, and Geometry, volume 76, 251–276. Springer, Proceedings in Mathematics and Statistics, 2014.

    Google Scholar 

  14. [14]

    H. T. Hà and A. V. Tuyl: Monomial ideals, edge ideals of hypergraphs, and their graded betti numbers, Journal of Algebraic Combinatorics 27 (2008), 215–245.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    T. Januszkiewicz and J. Świątkowski: Hyperbolic Coxeter groups of large dimension, Commentarii Mathematici Helvetici 78 (2003), 555–583.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    G. Kalai and R. Meshulam: Intersection of Leray complexes and regularity of monomial ideals, Journal of Combinatorial Theory Series A 113 (2006), 1586–1592.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    M. Katzman: Characteristic-independence of Betti numbers of graph ideals, Journal of Combinatorial Theory Series A 113 (2006), 435–454.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    D. Kozlov: Combinatorial Algebraic Topology, volume ACM 21, Springer, Berlin, 2008.

    Google Scholar 

  19. [19]

    V. V. Lozin: On maximum induced matchings in bipartite graphs, Information Processing Letters 81 (2002), 7–11.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    F. H. Lutz and E. Nevo: Stellar theory for flag complexes, Mathematica Scandinavica 118 (2016), 70–82.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai and S. Yassemi: Vertex decomposability and regularity of very well-covered graphs, Journal of Pure and Applied Algebra 215 (2011), 2473–2480.

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    M. Marietti and D. Testa: A uniform approach to complexes arising from forests, Electronic Journal of Combinatorics, 15:#R101, 2008.

  23. [23]

    D. Maruőič and T. Pisanski: The remarkable generalized Petersen graph G(8; 3), Mathematica Slovaca 50 (2000), 117–121.

    MathSciNet  Google Scholar 

  24. [24]

    S. Morey and R. H. Villarreal: Edge ideals: algebraic and combinatorial properties, in: C. Francisco, L. C. Klingler, S. Sather-Wagstaff, and J. C. Vassilev, editors, Progress in Commutative Algebra 1: Combinatorics and Homology, chapter 3, 85–126. De Gruyter, Berlin, 2012.

    Google Scholar 

  25. [25]

    E. Nevo: Regularity of edge ideals of C4-free graphs via the topology of the lcmlattice, Journal of Combinatorial Theory Series A 118 (2011), 491–501.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    E. Nevo and I. Peeva: C4-free edge ideals, Journal of Algebraic Combinatorics 37 (2013), 243–248.

    Article  MATH  Google Scholar 

  27. [27]

    D. Osajda: A construction of hyperbolic Coxeter groups, Commentarii Mathematici Helvetici 88 (2013), 353–367.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    P. Przytycki and J. Świątkowski: Flag-no-square triangulations and Gromov boundaries in dimension 3, Groups, Geometry, and Dynamics 3 (2013), 453–468.

    Google Scholar 

  29. [29]

    R. P. Stanley: Combinatorics and Commutative Algebra, Second Edition, volume 41, Progress in Mathematics, Birkhäuser, Boston, MA, 1996.

    Google Scholar 

  30. [30]

    W. A. Stein et al: Sage Mathematics Software, The Sage Development Team, http://www.sagemath.org, 2014.

    Google Scholar 

  31. [31]

    A. V. Tuyl: Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity, Archiv der Mathematik 93 (2009), 451–459.

    MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    D. W. Walkup: The lower bound conjecture for 3 and 4-manifolds, Acta Mathematica 125 (1970), 75–107.

    MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    G. Weetman: A construction of locally homogeneous graphs, Journal of the London Mathematical Society 50 (1994), 68–86.

    MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    G. Whieldon: Jump sequences of ideals, preprint, available at arXiv:1012.0108v1, 27pp, 2015.

    Google Scholar 

  35. [35]

    R. Woodroofe: Matchings, coverings, and Castelnuovo-Mumford regularity, Journal of Commutative Algebra 6 (2014), 287–304.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Türker Biyikoğlu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biyikoğlu, T., Civan, Y. Castelnuovo-Mumford Regularity of Graphs. Combinatorica 38, 1353–1383 (2018). https://doi.org/10.1007/s00493-017-3450-1

Download citation

Mathematics Subject Classification (2000)

  • 13F55
  • 05E40
  • 05C70
  • 05C75
  • 05C76