Note A Ramsey Statement for Infinite Groups

Abstract

If κ is a cardinal, n < ω, then there exists an Abelian group G such that if F: Gκ, then there exist distinct elements ai,αG (1≤in,α<κ), and a color τ<κ such that if 1≤i0<···<irn, αr<κ, then \(F\left( {{a_{{i_1},{\alpha _1}}} + \cdots + {a_{{i_r},{\alpha _r}}}} \right) = \tau \).

This is a preview of subscription content, access via your institution.

References

  1. [1]

    G. Elekes, A. Hajnal and P. Komjáth: Partition theorems for the power set, in: Sets, Graphs, and Numbers, Coll. Math. Soc. J. Bolyai, 60, 1991, 212–217.

    MATH  Google Scholar 

  2. [2]

    P. Erdos, A. Hajnal, A. Máté and R. Rado: Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, 106, North-Holland Publishing Co., Amsterdam, 1984, 347 pp.

    Google Scholar 

  3. [3]

    D. Fernández-Bretón: Hindman's theorem is a countable phenomenon, to appear. arXiv: 1506.05834

  4. [4]

    D. Fernández-Bretón and A. Rinot: Strong failures of higher analogs of Hindman's theorem, to appear. arXiv: 1608.01512

  5. [5]

    N. Hindman, I. Leader and D. Strauss: Pairwise sums in colourings of the reals, arXiv: 1505.02500.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Péter Komjáth.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komjáth, P. Note A Ramsey Statement for Infinite Groups. Combinatorica 38, 1017–1020 (2018). https://doi.org/10.1007/s00493-016-3706-1

Download citation

Mathematics Subject Classification (2000)

  • 03E05
  • 05D10
  • 20F99