Abstract
If κ is a cardinal, n < ω, then there exists an Abelian group G such that if F: G→κ, then there exist distinct elements ai,α∈G (1≤i≤n,α<κ), and a color τ<κ such that if 1≤i0<···<ir≤n, αr<κ, then \(F\left( {{a_{{i_1},{\alpha _1}}} + \cdots + {a_{{i_r},{\alpha _r}}}} \right) = \tau \).
This is a preview of subscription content, access via your institution.
References
- [1]
G. Elekes, A. Hajnal and P. Komjáth: Partition theorems for the power set, in: Sets, Graphs, and Numbers, Coll. Math. Soc. J. Bolyai, 60, 1991, 212–217.
- [2]
P. Erdos, A. Hajnal, A. Máté and R. Rado: Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, 106, North-Holland Publishing Co., Amsterdam, 1984, 347 pp.
- [3]
D. Fernández-Bretón: Hindman's theorem is a countable phenomenon, to appear. arXiv: 1506.05834
- [4]
D. Fernández-Bretón and A. Rinot: Strong failures of higher analogs of Hindman's theorem, to appear. arXiv: 1608.01512
- [5]
N. Hindman, I. Leader and D. Strauss: Pairwise sums in colourings of the reals, arXiv: 1505.02500.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Komjáth, P. Note A Ramsey Statement for Infinite Groups. Combinatorica 38, 1017–1020 (2018). https://doi.org/10.1007/s00493-016-3706-1
Received:
Revised:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 03E05
- 05D10
- 20F99