On the Number of Bases of Almost All Matroids

Abstract

For a matroid M of rank r on n elements, let b(M) denote the fraction of bases of M among the subsets of the ground set with cardinality r. We show that

$$\Omega \left( {1/n} \right) \leqslant 1 - b\left( M \right) \leqslant O\left( {\log {{\left( n \right)}^3}/n} \right)a\;sn \to \infty $$

for asymptotically almost all matroids M on n elements. We derive that asymptotically almost all matroids on n elements (1) have a Uk,2k-minor, whenever kO(log(n)), (2) have girth ≥Ω(log(n)), (3) have Tutte connectivity \(\geq\Omega\;{(\sqrt {log(n)})}\), and (4) do not arise as the truncation of another matroid.

Our argument is based on a refined method for writing compressed descriptions of any given matroid, which allows bounding the number of matroids in a class relative to the number of sparse paving matroids.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. E. Brouwer, A.M. Cohen and A. Neumaier: Distance-Regular Graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Berlin Heidelberg, 1989.

    Google Scholar 

  2. [2]

    N. Bansal, R. A. Pendavingh and J. G. van der Pol: On the number of matroids, Combinatorica 35 (2015), 253–277.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    F. R. K. Chung, R. L. Graham, P. Frankl and J. B. Shearer: Some intersection theorems for ordered sets and graphs, J. Combin. Theory Ser. A 43 (1986), 23–37.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    B. Cloteaux: Approximating the number of bases for almost all matroids, Congressus Numerantium 202 (2010), 149–153.

    MathSciNet  MATH  Google Scholar 

  5. [5]

    H. H. Crapo and G.-C. Rota: On the foundations of combinatorial theory: Combinatorial geometries, the M.I.T. Press, Cambridge, Mass.-London, preliminary edition, 1970.

    Google Scholar 

  6. [6]

    W. Critchlow: Minors of asymptotically almost all sparse paving matroids, preprint, available on arXiv:1605.02414, 2016.

    Google Scholar 

  7. [7]

    J. Geelen, B. Gerards and G. Whittle: Solving Rota's conjecture, Notices of the AMS 61 (2014).

  8. [8]

    R. L. Graham and N. J. A. Sloane: Lower bounds for constant weight codes, IEEE Trans. Inform. Theory 26 (1980), 37–43.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    S. Jukna: Extremal combinatorics: with applications in computer science, Springer, 2011.

    Google Scholar 

  10. [10]

    D. E. Knuth: The asymptotic number of geometries, J. Combin. Theory Ser. A 16 (1974), 398–400.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    D. J. Kleitman and K. J. Winston: On the number of graphs without 4-cycles, Discrete Math. 41 (1982), 167–172.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    D. Mayhew, M. Newman and G. Whittle: On excluded minors for realrepresentability, J. Combin. Theory Ser. B 99 (2009), 685–689.

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    D. Mayhew, M. Newman, D. Welsh and G. Whittle: On the asymptotic proportion of connected matroids, European J. Combin. 32 (2011), 882–890.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    P. Nelson: Almost all matroids are non-representable, Preprint, avaible on arXiv:1605.04288v2, 2016.

    Google Scholar 

  15. [15]

    J. Oxley, C. Semple, L. Warshauer and D. Welsh: On properties of almost all matroids, Adv. Appl. Math. 50 (2013), 115–124.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    J. Oxley: Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, second edition, 2011.

    Google Scholar 

  17. [17]

    R. Pendavingh and J. van der Pol: Counting matroids in minor-closed classes, J. of Combin. Theory Ser. B 111 (2015), 126–147.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    R. Pendavingh and J. van der Pol: On the number of matroids compared to the number of sparse paving matroids, Electron. J. Combin. 22 (2015), Paper 2.51.

  19. [19]

    W. Samotij: Counting independent sets in graphs, Eur. J. Combin. 48 (2015), 5–18.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rudi Pendavingh.

Additional information

This research was supported by the Netherlands Organisation for Scientific Research (NWO) grant 613.001.211.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pendavingh, R., van der Pol, J. On the Number of Bases of Almost All Matroids. Combinatorica 38, 955–985 (2018). https://doi.org/10.1007/s00493-016-3594-4

Download citation

Mathematics Subject Classification (2000)

  • 05B35
  • 05A16