Skip to main content
Log in

2-Arc-Transitive Regular Covers of Kn,n Having the Covering Transformation Group ℤ 2 p

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

This paper contributes to the classification of finite 2-arc-transitive graphs. In [12], all the regular covers of complete bipartite graphs Kn,n were classified, whose covering transformation group is cyclic and whose fibre-preserving automorphism group acts 2-arc-transitively. In this paper, a further classification is achieved for all the regular covers of Kn,n, whose covering transformation group is elementary abelian group of order p2 and whose fibre-preserving automorphism group acts 2-arc-transitively. As a result, two new infinite families of 2-arc-transitive graphs are found. Moveover, it will be explained that it seems to be infeasible to classify all such covers when the covering transformation group is an elementary abelian group of order pk for an arbitrary integer k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. M. Bloom: The subgroups of PSL(3,q) for odd q, Trans. Amer. Math. Soc. 127 (1967), 150–178.

    MathSciNet  MATH  Google Scholar 

  2. P. J. Cameron: Permutation groups, London Math. Soc. Student Texts 45, Univ. Press, Cambridge, 1999.

    Book  MATH  Google Scholar 

  3. M. Conder and J. Ma: Arc-transitive abelian regular covers of cubic graphs, J. Algebra 387 (2013), 215–242.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Conder and J. Ma: Arc-transitive abelian regular covers of the Heawood graph, J. Algebra 387 (2013), 243–267.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  6. J. D. Dixon and B. Mortimer: Permutation groups, Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  7. S. F. Du, D. Marušic and A. O. Waller: On 2-arc-transitive covers of complete graphs, J. Combin. Theory, Ser. B 74 (1998), 276–290.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. F. Du, J. H. Kwak and R. Nedela: Regular embeddings of complete multipartite graphs, Europ. J. Combin. 26 (2005), 505–519.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. F. Du, J. H. Kwak and M. Y. Xu: On 2-arc-transitive covers of complete graphs with covering transformation group Z3 p, J. Combin. Theory, Ser. B 93 (2005), 73–93.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. F. Du, A. Malnic and D. Marušic: Classification of 2-arc-transitive dihedrants, J. Combin. Theory, Ser. B 98 (2008), 1349–1372.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. F. Du and M. Y. Xu: A classification of semisymmetric graphs of order 2pq, Comm. in Algebra 28 (2000), 2685–2715.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. F. Du and W. Q. Xu: 2-Arc-transitive cyclic covers of Kn,n, submitted.

  13. S. F. Du and W. Q. Xu: 2-Arc-Transitive regular covers of Kn,n–nK2 having the covering transformation group Z3 p, J. Aust. Math. Soc. 0 (2016), 1–26.

    Google Scholar 

  14. X. G. Fang, G. Havas and C. E. Praeger: On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra 222 (1999), 271–283.

    Article  MathSciNet  MATH  Google Scholar 

  15. X. G. Fang and C. E. Praeger: Finite two-arc-transitive graphs admitting a Suzuki simple group, Comm. Algebra 27 (1999), 3727–3754.

    Article  MathSciNet  MATH  Google Scholar 

  16. X. G. Fang and C. E. Praeger: Finite two-arc-transitive graphs admitting a Ree simple group, Comm. Algebra 27 (1999), 3755–3769.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Q. Feng and J. H. Kwak: Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory, Ser B 97 (2007), 627–646.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. D. Godsil and A. D. Hensel: Distance regular covers of the complete graph, J. Combin. Theory, Ser B 56 (1992), 205–238.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. D. Godsil, R. A. Liebler and C. E. Praeger: Antiposal distance transitive covers of complete graphs, Europ. J. Combin. 19 (1992), 455–478.

    Article  MATH  Google Scholar 

  20. A. Gardiner and C. E. Praeger: Topological covers of complete graphs, Math. Proc. Camb. Phil. Soc. 123 (1998), 549–559.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. L. Gross and T. W. Tucker: Topological Graph Theory, Wiley-Interscience, New York, 1987.

    MATH  Google Scholar 

  22. J. L. Gross and T. W. Tucker: Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273–283.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. M. Guralnick: Subgroups of prime power index in a simple group, J. Algebra 81 (1983), 304–311.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Hering: Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geometriae Dedicata 2 (1974), 425–460.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Huppert: Endliche Gruppen I, Springer-Verlag, Berlin, 1967.

    Book  MATH  Google Scholar 

  26. A. A. Ivanov and C. E. Praeger: On finite affinne 2-arc-transitive graphs, Europ. J. Combin. 14 (1993), 421–444.

    Article  MATH  Google Scholar 

  27. C. H. Li: On finite s-transitive graphs of odd order, J. Combin. Theory, Ser. B 81 (2001), 307–317.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. H. Li: The finite vertex-primitive and vertex-biprimitive stransitive graphs for s≥4, Tran. Amer. Math. Soc. 353 (2001), 3511–3529.

    Article  MATH  Google Scholar 

  29. A. Malnic: Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998), 203–218.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Mortimer: The modular permutation representations of the known doubly transitive groups, Proc. London Math. Soc. 41 (1980), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. E. Praeger: An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993), 227–239.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. E. Praeger: On a reduction theorem for finite, bipartite, 2-arc-transitive graphs, Australas J. Combin. 7 (1993), 21–36.

    MathSciNet  MATH  Google Scholar 

  33. M. Suzuki: Group Theory I, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  34. W. Q. Xu and S. F. Du: 2-arc-transitive cyclic covers of Kn,n–nK2, J. Algeb. Combin. 39 (2014), 883–902.

    Article  MATH  Google Scholar 

  35. W. Q. Xu, S. F. Du, J. H. Kwak and M. Y. Xu: 2-Arc-transitive metacyclic covers of complete graphs, J. Combin. Theory, Ser. B 111 (2015), 54–74.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Q. Xu, Y. H. Zhu and S. F. Du: 2-Arc-Transitive regular covers of Kn,n–nK2 with the covering transformation group Z2 p, Ars Math. Contemp. 10 (2016), 269–280.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofei Du.

Additional information

The first two authors are supported by the National Natural Science Foundation of China (11271267, 11371259) and National Research Foundation for the Doctoral Program of Higher Education of China (20121108110005).

The second author is supported by the China Postdoctoral Science Foundation (2016M591271).

The third author is supported by the National Natural Science Foundation of China (11371355).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Xu, W. & Yan, G. 2-Arc-Transitive Regular Covers of Kn,n Having the Covering Transformation Group ℤ 2 p . Combinatorica 38, 803–826 (2018). https://doi.org/10.1007/s00493-016-3511-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3511-x

Mathematics Subject Classification (2000)

Navigation