Tight Chiral Polyhedra

Abstract

A chiral polyhedron with Schläfli symbol {p,q} is called tight if it has 2pq flags, which is the minimum possible. In this paper, we fully characterize the Schläfli symbols of tight chiral polyhedra. We also provide presentations for the automorphism groups of several families of tight chiral polyhedra.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    A. B. D’Azevedo, G. Jones and E. Schulte: Constructions of chiral polytopes of small rank, Canad. J. Math. 63 (2011), 1254–1283.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    M. Conder: Chiral polytopes with up to 2000 ags, https://www.math.auckland.ac.nz/~conder/ChiralPolytopesWithFewFlags-ByType.txt

  3. [3]

    M. Conder and G. Cunningham: Tight orientably-regular polytopes, Ars Mathematica Contemporanea 8 (2015), 68–81.

    MathSciNet  MATH  Google Scholar 

  4. [4]

    G. Cunningham: Mixing chiral polytopes, J. Alg. Comb. 36 (2012), 263–277.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    G. Cunningham: Minimal equivelar polytopes, Ars Mathematica Contemporanea 7 (2014), 299–315.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    G. Cunningham and D. Pellicer: Classification of tight regular polyhedra, Journal of Algebraic Combinatorics 43 (2016), 665–691.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    The GAP Group: GAP–Groups, Algorithms, and Programming, Version 4.4.12, 2008.

  8. [8]

    P. McMullen and E. Schulte: Abstract regular polytopes, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  9. [9]

    E. Schulte and A. I. Weiss: Chiral polytopes, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, 493–516.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabe Cunningham.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cunningham, G. Tight Chiral Polyhedra. Combinatorica 38, 115–142 (2018). https://doi.org/10.1007/s00493-016-3505-8

Download citation

Mathematics Subject Classification (2000)

  • 20B25
  • 51M20
  • 52B05
  • 52B15