Inverses of bipartite graphs

Article
  • 110 Downloads

Mathematics Subject Classification (2000)

05C22 05C50 06A07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Aigner: Combinatorial Theory, Springer, Berlin, 1979.CrossRefMATHGoogle Scholar
  2. [2]
    R. B. Bapat and E. Ghorbani: Inverses of triangular matrices and bipartite graphs, Linear Algebra Appl. 447 (2014), 68–73.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    D. Cvetković, I. Gutman and S. Simić: On self-pseudo-inverse graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. z. 602–633 (1978), 111–117.MathSciNetMATHGoogle Scholar
  4. [4]
    R. Donaghey and L. W. Shapiro: Motzkin numbers, J. Combin. Theory Ser. A 23 (1977), 291–301.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    C. D. Godsil: Inverses of trees, Combinatorica 5 (1985), 33–39.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    C. D. Godsil: Personal communication with D. Ye, 2015.Google Scholar
  7. [7]
    F. Harary: On the notion of balance of a signed graph, Michigan Math. J. 2 (1953), 143–146.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F. Harary: The determinant of the adjacency matrix of a graph, SIAM Rev. 4 (1962), 202–210.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    F. Harary and H. Minc: Which nonnegative matrices are self-inverse? Math. Mag. 49 (1976), 91–92.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    D. J. Klein: Treediagonal matrices and their inverses, Linear Algebra Appl. 42 (1982), 109–117.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    L. LovÁsz: Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.MATHGoogle Scholar
  12. [12]
    C. McLeman and E. McNicholas: Graph invertibility, Graphs Combin. 30 (2014), 977–1002.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    H. Minc: Nonnegative Matrices, Wiley, New York, 1988.MATHGoogle Scholar
  14. [14]
    S. K. Panda and S. Pati: On the inverese of a class of graphs with unique perfect matchings, Elect. J. Linear Algebra 29 (2015), 89–101.CrossRefMATHGoogle Scholar
  15. [15]
    R. Simion and D. Cao: Solution to a problem of C. D. Godsil regarding bipartite graphs with unique perfect matching, Combinatorica 9 (1989), 85–89.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    D. J. A. Welsh: Matroid Theory, Dover Publications, 2010.MATHGoogle Scholar
  17. [17]
    D. Ye, Y. Yang, B. Mandal and D. J. Klein: Graph invertibility and median eigenvalues, Linear Algebra Appl. 513 (2017), 304–323.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    T. Zaslavsky: Signed graphs, Discrete Appl. Math. 4 (1982), 47–74.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Zaslavsky: A mathematical bibliography of signed and gain graphs and allied areas, Electron. J. Combin. 8 (1998), #DS8: 1–124.MathSciNetMATHGoogle Scholar
  20. [20]
    T.Zaslavsky: Signed graphs and geometry, arXiv:1303.2770 [math.CO].Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceYantai UniversityYantai, ShandongChina
  2. 2.Department of Mathematical Sciences and Center for Computational SciencesMiddle Tennessee State UniversityMurfreesboroUSA

Personalised recommendations