On Bisecants of Rédei Type Blocking Sets and Applications

Abstract

If B is a minimal blocking set of size less than 3(q+1)=2 in PG(2,q), q is a power of the prime p, then Szőnyi’s result states that each line meets B in 1 (mod p) points. It follows that B cannot have bisecants, i.e., lines meeting B in exactly two points. If q >13, then there is only one known minimal blocking set of size 3(q+1)=2 in PG(2, q), the so-called projective triangle. This blocking set is of Rédei type and it has 3(q-1)=2 bisecants, which have a very strict structure. We use polynomial techniques to derive structural results on Rédei type blocking sets from information on their bisecants. We apply our results to point sets of PG(2, q) with few odd-secants.

In particular, we improve the lower bound of Balister, Bollobás, Füredi and Thompson on the number of odd-secants of a (q+2)-set in PG(2, q) and we answer a related open question of Vandendriessche. We prove structural results for semiovals and derive the non existence of semiovals of size q+3 when p≠3 and q>5. This extends a result of Blokhuis who classified semiovals of size q+2, and a result of Bartoli who classified semiovals of size q+3 when q ≤ 17. In the q even case we can say more applying a result of Szőnyi and Weiner about the stability of sets of even type. We also obtain a new proof to a result of Gács and Weiner about (q+t, t)-arcs of type (0, 2, t) and to one part of a result of Ball, Blokhuis, Brouwer, Storme and Szőnyi about functions over GF(q) determining less than (q+3)/2 directions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    P. Balister, B. Bollobás, Z. Füredi and J. Thompson: Minimal Symmetric Differences of Lines in Projective Planes, J. Combin. Des. 22 (2014), 435–451.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    S. Ball: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341–350.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szonyi: On the number of slopes of the graph of a function definied over a finite field, J. Combin. Theory Ser. A 86 (1999), 187–196.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    D. Bartoli: On the Structure of Semiovals of Small Size, J. Combin. Des. 22 (2014), 525–536.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    A. Bichara and G. Korchmáros: Note on (q+2)-sets in a Galois plane of order q, Ann. Discrete Math. 14 (1980), 117–121.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    A. Blokhuis: Characterization of seminuclear sets in a finite projective plane, J. Geom. 40 (1991), 1519.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    A. Blokhuis and A.E. Brouwer: Blocking sets in Desarguesian projective planes, Bull. London Math. Soc. 18 (1986), 132–134.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    A. Blokhuis, A.E. Brouwer and T. Szonyi: Covering all points except one, J. Algebraic Combin. 32 (2010), 59–66.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    A. Blokhuis and A.A. Bruen: The minimal number of lines intersected by a set of q+2 points, blocking sets and intersecting circles, J. Combin. Theory Ser. A 50 (1989), 308–315.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    A. Blokhuis and F. Mazzocca: The finite field Kakeya problem, Building Bridges 205–218, Bolyai Soc. Math. Stud. 19, Springer, Berlin, 2008.

    Book  MATH  Google Scholar 

  11. [11]

    A.E. Brouwer and A. Schrijver: The blocking number of an affine space, J. Combin. Theory Ser. A 24 (1978), 251–253.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    B. Csajbók, T. Héger and Gy. Kiss: Semiarcs with a long secant in PG(2;q), Innov. Incidence Geom. 14 (2015), 1–26.

    MathSciNet  MATH  Google Scholar 

  13. [13]

    M. De Boeck and G. Van de Voorde: A linear set view on KM-arcs, J. Algebraic Combin. 44 (2016), 131–164.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    R.J. Evans, J. Greene and H. Niederreiter: Linearized polynomials and permutation polynomials of finite fields, Michigan Math. J. 39 (1992), 405–413.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    A. Gács: On regular semiovals in PG(2,q), J. Algebraic Combin. 23 (2006), 71–77.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    A. Gács and Zs. Weiner: On (q+t,t)-arcs of type (0;2; t), Des. Codes Cryptogr. 29 (2003), 131–139.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    J.W.P. Hirschfeld: Projective Geometries over Finite Fields, 2nd ed., Clarendon Press, Oxford, 1998.

    MATH  Google Scholar 

  18. [18]

    R. Jamison: Covering finite fields with cosets of subspaces, J. Combin. Theory Ser. A 22 (1977), 253–266.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    Gy. Kiss: A survey on semiovals, Contrib. Discrete Math. 3 (2008), 81–95.

    MathSciNet  MATH  Google Scholar 

  20. [20]

    Gy. Kiss, S. Marcugini and F. Pambianco: On the spectrum of the sizes of semiovals in PG(2,q),q odd, Discrete Math. 310 (2010), 3188–3193.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    Gy. Kiss and J. Ruff: Notes on Small Semiovals, Annales Univ. Sci. Budapest 47 (2004), 143–151.

    MathSciNet  MATH  Google Scholar 

  22. [22]

    G. Korchmáros and F. Mazzocca: On (q+t)-arcs of type (0,2,t) in a desarguesian plane of order q, Math. Proc. Cambridge Philos. Soc. 108 (1990), 445–459.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    P. Lisonek: Computer-assisted Studies in Algebraic Combinatorics, Ph.D. Thesis, RISC, J. Kepler University Linz, 1994.

    Google Scholar 

  24. [24]

    P. Sziklai: On small blocking sets and their linearity, J. Combin. Theory Ser. A 115 (2008), 1167–1182.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    T. Szonyi: Blocking Sets in Desarguesian Affine and Projective Planes, Finite Fields Appl. 3 (1997), 187–202.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    T. Szonyi: On the Number of Directions Determined by a Set of Points in an Affine Galois Plane, J. Combin. Theory Ser. A 74 (1996), 141–146.

    MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    T. Szonyi and Zs. Weiner: On the stability of the sets of even type, Adv. Math. 267 (2014), 381–394.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    P. Vandendriessche: On small line sets with few odd-points, Des. Codes Cryptogr. 75 (2015), 453–463.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bence Csajbók.

Additional information

Research supported by the Hungarian National Foundation for Scientific Research, Grant No. K 81310 and by the Italian Ministry of Education, University and Research (PRIN 2012 project Strutture geometriche, combinatoria e loro applicazioni”).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Csajbók, B. On Bisecants of Rédei Type Blocking Sets and Applications. Combinatorica 38, 143–166 (2018). https://doi.org/10.1007/s00493-016-3442-6

Download citation

Mathematics Subject Classification (2000)

  • 51E20
  • 51E21