Advertisement

Combinatorica

, Volume 37, Issue 5, pp 795–804 | Cite as

Cocliques in the Kneser graph on line-plane flags in PG(4;q)

  • Aart Blokhuis
  • Andries E. Brouwer
Original Paper
  • 81 Downloads

Abstract

We determine the independence number of the Kneser graph on line-plane flags in the projective space PG(4;q). We also classify the corresponding maximum-size cocliques.

Mathematics Subject Classification (2000)

05C35 05C69 51E20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Blokhuis, A. E. Brouwer and Ç. Güven: Cocliques in the Kneser graph on the point-hyperplane flags, Combinatorica 34 (2013), 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Blokhuis, A. E. Brouwer and T. Szőnyi: Maximal cocliques in the Kneser graph on point-plane flags in PG(4;q), European Journal of Combinatorics 35 (2014), 95–104.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Erdős, C. Ko and R. Rado: Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961), 313–320.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Frankl and R. M. Wilson: The Erdős-Ko-Rado theorem for vector spaces, J. Combin. Theory (A) 43 (1986), 228–236.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations