Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory

Abstract

We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. E. Adams, S. Bulman-Fleming and M. Gould: Endomorphism properties of algebraic structures, in: Proceedings of the Tennessee Topology Conference (Nashville, TN, 1996), 1–17, World Sci. Publishing, River Edge, NJ, 1997.

    Google Scholar 

  2. [2]

    R. Akhtar, T. Jackson-Henderson, R. Karpman, M. Boggess, I. Jiménez, A. Kinzel and D. Pritikin: On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009), no. 1, Research Paper 117, 13.

    MathSciNet  MATH  Google Scholar 

  3. [3]

    B. Alspach and T. D. Parsons: Isomorphism of circulant graphs and digraphs, Discrete Math. 25 (1979), 97–108.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J. Araújo, E. Dobson and J. Konieczny: Automorphisms of endomorphism semigroups of re exive digraphs, Math. Nachr. 283 (2010), 939–964.

    MathSciNet  MATH  Google Scholar 

  5. [5]

    J. Araújo, V. H. Fernandes, M. Jesus, V. Maltcev and J. D. Mitchell: Automorphisms of partial endomorphism semigroups, Publicationes Mathematicae Debrecen 79 (1–2) (2011), 23–39.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    J. Araújo and M. Kinyon: Inverse semigroups with idempotent-fixing automorphisms, Semigroup Forum 89 (2014), 469–474.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    J. Araújo and J. Konieczny: Dense relations are determined by their endomorphism monoids, Semigroup Forum 70 (2005), 302–306.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    J. Araújo and J. Konieczny: Automorphism groups of centralizers of idempotents, J. Algebra 269 (2003), 227–239.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    J. Araújo and J. Konieczny: Automorphisms of the endomorphism monoids of relatively free bands, Proc. Edinb. Math. Soc. (2) 50 (2007), 1–21.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    J. Araújo and J. Konieczny: A method of finding automorphism groups of endomorphism monoids of relational systems, Discrete Math. 307(13), (2007), 1609–1620.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    J. Araújo and J. Konieczny: Automorphisms of endomorphism monoids of 1simple free algebras, Comm. Algebra 37 (2009), 83–94.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    J. Araújo and J. Konieczny: General theorems on automorphisms of semigroups and their applications, Journal of the Australian Mathematical Society 87 (2009), 1–17.

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    L. Babai: Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977), 329–336.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    S. Bhoumik, E. Dobson and J. Morris: Asymptotic automorphism groups of circulant graphs and digraphs, Ars Math. Contemp., 7 (2014), 487–506.

    MathSciNet  MATH  Google Scholar 

  15. [15]

    P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič and L. A. Nowitz: Transitive permutation groups without semiregular subgroups, J. London Math. Soc. (2) 66 (2002), 325–333.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    J. D. Dixon and B. Mortimer: Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996.

    Google Scholar 

  17. [17]

    E. Dobson and J. Morris: Toida’s conjecture is true, Electron. J. Combin. 9 (2002), Research Paper 35 (electronic).

    MathSciNet  MATH  Google Scholar 

  18. [18]

    E. Dobson and J. Morris: On automorphism groups of circulant digraphs of squarefree order, Discrete Math. 299 (2005), 79–98.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    E. Dobson and J. Morris: Automorphism groups of wreath product digraphs, Electron. J. Combin. 16 (2009), Research Paper 17.

    MathSciNet  MATH  Google Scholar 

  20. [20]

    S. A. Evdokimov and I. N. Ponomarenko: Characterization of cyclotomic schemes and normal Schur rings over a cyclic group, St. Petersburg Math. J. 14 (2003), 189–221.

    MathSciNet  MATH  Google Scholar 

  21. [21]

    W. Klotz and T. Sander: Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007), Research Paper 45 (electronic).

    MathSciNet  MATH  Google Scholar 

  22. [22]

    L. M. Gluskín: Semi-groups of isotone transformations Uspehi Mat. Nauk 16 (1961), 157–162, (Russian).

  23. [23]

    K. H. Leung and S. H. Man: On Schur rings over cyclic groups II, J. Algebra 183 (1996), 273–285.

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    K. H. Leung and S. H. Man: On Schur rings over cyclic groups, Israel J. Math. 106 (1998), 251–267.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    I. Levi: Automorphisms of normal transformation semigroups, Proc. Edinburgh Math. Soc. (2) 28 (1985), 185–205.

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    I. Levi: Automorphisms of normal partial transformation semigroups, Glasgow Math. J. 29 (1987), 149–157.

    MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    I. Levi: On the inner automorphisms of finite transformation semigroups, Proc. Edinburgh Math. Soc. (2) 39 (1996), 27–30.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    C. H. Li: On isomorphisms of connected Cayley graphs, Discrete Math. 178 (1998), 109–122.

    MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    C. H. Li: Permutation groups with a cyclic regular subgroup and arc transitive circulants, J. Algebraic Combin. 21 (2005), 131–136.

    MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    A. E. Liber: On symmetric generalized groups, Mat. Sbornik N. S. 33 (1953), 531–544 (Russian).

    MathSciNet  Google Scholar 

  31. [31]

    K. D. Magill: Semigroup structures for families of functions, I. Some homomorphism theorems, J. Austral. Math. Soc. 7 (1967), 81–94.

    MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    A. I. Mal’cev: Symmetric groupoids, Mat. Sbornik N. S. 31 (1952), 136–151 (Russian).

    MathSciNet  Google Scholar 

  33. [33]

    G. Mashevitzky, B. M. Schein and G. I. Zhitomirski: Automorphisms of the endomorphism semigroup of a free inverse semigroup, Comm. Alg. 34 (2006), 3569–3584.

    MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    J. D. P. Meldrum: ‘Wreath products of groups and semigroups,” Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 74, Longman, Harlow, 1995.

    Google Scholar 

  35. [35]

    M. Muzychuk, M. Klin and R. Pöschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and association schemes (Piscataway, NJ, 1999), 241–264, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  36. [36]

    J. Schreier: Über Abbildungen einer abstrakten Menge Auf ihre Teilmengen, Fund. Math. 28 (1936), 261–264.

    MATH  Google Scholar 

  37. [37]

    R. P. Sullivan: Automorphisms of transformation semigroups, J. Australian Math. Soc. 20 (1975), part 1, 77–84.

    MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    È. G. šutov: Homomorphisms of the semigroup of all partial transformations, Izv. Vysš. Učebn. Zaved. Matematika 3 (1961), 177–184 (Russian).

    MathSciNet  Google Scholar 

  39. [39]

    J. S. V. Symons: Normal transformation semigroups, J. Austral. Math. Soc. Ser. A 22 (1976), 385–390.

    MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    W. T. Tutte: A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459–474.

    MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    Ju. M. Važenin: The elementary definability and elementary characterizability of classes of re exive graphs, Izv. Vyss. Ucebn. Matematika 122 (1972), 3–11 (Russian).

    Google Scholar 

  42. [42]

    H. Wielandt: Permutation groups through invariant relations and invariant functions, lectures given at The Ohio State University, Columbus, Ohio, 1969.

    Google Scholar 

  43. [43]

    H. Wielandt:’ Mathematische Werke/Mathematical works. Vol. 1,” Walter de Gruyter & Co., Berlin, 1994.

    Google Scholar 

  44. [44]

    M. Y. Xu: Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309–319.

    MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    H. Yang and X. Yang: Automorphisms of partition order-decreasing transformation monoids, Semigroup Forum 85 (2012), 513–524.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfram Bentz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Araújo, J., Bentz, W., Dobson, E. et al. Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory. Combinatorica 38, 1–28 (2018). https://doi.org/10.1007/s00493-016-3403-0

Download citation

Mathematics Subject Classification (2000)

  • 05C25
  • 20M20
  • 20B25