, Volume 38, Issue 2, pp 341–380 | Cite as

Local Convergence of Random Graph Colorings

  • Amin Coja-Oghlan
  • Charilaos Efthymiou
  • Nor Jaafari
Original Paper


Let G = G(n, m) be a random graph whose average degree d = 2m/n is below the k-colorability threshold. If we sample a k-coloring σ of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold dk,cond, the colors assigned to far away vertices are asymptotically independent [Krzakala et al.: Proc. National Academy of Sciences 2007]. We prove this conjecture for k exceeding a certain constant k0. More generally, we investigate the joint distribution of the k-colorings that σ induces locally on the bounded-depth neighborhoods of any fixed number of vertices. In addition, we point out an implication on the reconstruction problem.

Mathematics Subject Classification (2000)

05C80 05C15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Achlioptas and E. Friedgut: A sharp threshold for k-colorability, Random Struct. Algorithms 14 (1999), 63–70.MathSciNetMATHGoogle Scholar
  2. [2]
    D. Achlioptas and A. Coja-Oghlan: Algorithmic barriers from phase transitions, Proc. 49th FOCS (2008), 793–802.Google Scholar
  3. [3]
    D. Achlioptas and M. Molloy: The analysis of a list-coloring algorithm on a random graph, Proc. 38th FOCS (1997), 204–212.Google Scholar
  4. [4]
    D. Achlioptas and A. Naor: The two possible values of the chromatic number of a random graph, Annals of Mathematics 162 (2005), 1333–1349.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    D. Aldous and J. Steele: The objective method: probabilistic combinatorial optimization and local weak convergence (2003), in: Probability on discrete structures (H. Kesten (ed.)), Springer 2004.Google Scholar
  6. [6]
    N. Alon and M. Krivelevich: The concentration of the chromatic number of random graphs, Combinatorica 17 (1997), 303–313.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    V. Bapst, A. Coja-Oghlan and C. Efthymiou: Planting colourings silently, arXiv:1411.0610 (2014).Google Scholar
  8. [8]
    V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann and Dan Vilenchik: The condensation phase transition in random graph coloring, Communications in Mathematical Physics 341 (2016), 543–606.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    I. Benjamini and O. Schramm: Recurrence of distributional limits of nite planar graphs, Electronic J. Probab. 6 (2001), 1–13.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. Bhatnagar, J. Vera, E. Vigoda and D. Weitz: Reconstruction for Colorings on Trees, SIAM Journal on Discrete Mathematics. 25 (2011), 809–826.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    N. Bhatnagar, A. Sly and P. Tetali: Decay of correlations for the hardcore model on the d-regular random graph, Electronic Journal of Probability 21 (2016).Google Scholar
  12. [12]
    B. Bollobás: The chromatic number of random graphs, Combinatorica 8 (1988), 49–55.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    C. Bordenave and P. Caputo: Large deviations of empirical neighborhood distri- bution in sparse random graphs, Probability Theory and Related Fields 163 (2015), 149–222.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Coja-Oghlan: Upper-bounding the k-colorability threshold by counting covers, Electronic Journal of Combinatorics 20 (2013), P32.MathSciNetMATHGoogle Scholar
  15. [15]
    A. Coja-Oghlan and D. Vilenchik: The chromatic number of random graphs for most average degrees, International Mathematics Research Notices, (2015): rnv333.Google Scholar
  16. [16]
    M. E. Dyer and A. M. Frieze: Randomly coloring random graphs, Random Struct. Algorithms 36 (2010), 251–272.MathSciNetMATHGoogle Scholar
  17. [17]
    M. Dyer, A. Flaxman, A. Frieze and E. Vigoda: Randomly coloring sparse random graphs with fewer colors than the maximum degree, Random Structures and Algorithms 29 (2006), 450–465.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Efthymiou: MCMC sampling colourings and independent sets of G(n;d=n) near uniqueness threshold, Proc. 25th SODA (2014), 305–316.Google Scholar
  19. [19]
    C. Efthymiou: Switching colouring of G(n;d=n) for sampling up to Gibbs unique- ness threshold, Proc. 22nd ESA (2014), 371–381.Google Scholar
  20. [20]
    C. Efthymiou: Reconstruction/non-reconstruction thresholds for colourings of gen- eral Galton-Watson trees, Proc. 19th RANDOM (2015), 756–774.Google Scholar
  21. [21]
    P. Erdős: Graph theory and probability, Canad. J. Math. 11 (1959), 34–38.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    P. Erdős and A. Rényi: On the evolution of random graphs, Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5 (1960), 17–61.MathSciNetMATHGoogle Scholar
  23. [23]
    A. Gerschenfeld and A. Montanari: Reconstruction for models on random graphs, Proc. 48th FOCS (2007), 194–204.Google Scholar
  24. [24]
    G. Grimmett and C. McDiarmid: On colouring random graphs, Mathematical Proceedings of the Cambridge Philosophical Society 77 (1975), 313–324.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    D. A. Johnston and P. Plecháč: Equivalence of ferromagnetic spin models on trees and random graphs, J. Phys. A 31 (1998), 475–482.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Krivelevich and B. Sudakov: Coloring random graphs, Information Processing Letters 67 (1998), 71–74.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian and L. Zde- borova: Gibbs states and the set of solutions of random constraint satisfaction prob- lems, Proc. National Academy of Sciences 104 (2007), 10318–10323.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    F. Krzakala, A. Pagnani and M. Weigt: Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs, Phys. Rev. E 70 (2004), 046705.Google Scholar
  29. [29]
    T. Luczak: The chromatic number of random graphs, Combinatorica 11 (1991), 45–54.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    T. Luczak: A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11 (1991), 295–297.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    D. Matula: Expose-and-merge exploration and the chromatic number of a random graph, Combinatorica 7 (1987), 275–284.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    M. Mézard and A. Montanari: Information, physics and computation, Oxford University Press 2009.Google Scholar
  33. [33]
    M. Mézard and G. Parisi: The Bethe lattice spin glass revisited, Eur. Phys. J. B 20 (2001), 217–233.MathSciNetCrossRefGoogle Scholar
  34. [34]
    M. Mézard and G. Parisi: The cavity method at zero temperature, Journal of Statistical Physics 111 (2003), 1–34.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Mézard, M. Palassini and O. Rivoire: Landscape of solutions in constraint satisfaction problems, Phys. Rev. E 95 (2005), 200202.Google Scholar
  36. [36]
    M. Mézard, G. Parisi and R. Zecchina: Analytic and algorithmic solution of random satisfiability problems, Science 297 (2002), 812–815.CrossRefGoogle Scholar
  37. [37]
    M. Molloy: The freezing threshold for k-colourings of a random graph, Proc. 43rd STOC (2012), 921–930.CrossRefGoogle Scholar
  38. [38]
    A. Montanari, E. Mossel and A. Sly: The weak limit of Ising models on locally tree-like graphs, Probab. Theory Relat. Fields 152 (2012), 31–51.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Montanari, R. Restrepo and P. Tetali: Reconstruction and clustering in random constraint satisfaction problems, SIAM J. Discrete Math. 25 (2011), 771–808.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    E. Mossel and A. Sly: Gibbs rapidly samples colorings of G(n;d=n), Probability Theory and Related Fields 148 (2010), 37–69.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    E. Shamir and J. Spencer: Sharp concentration of the chromatic number of random graphs G(n;p), Combinatorica 7 (1987), 121–129.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    A. Sly: Reconstruction of random colourings, Comm. Math. Phys. 288 (2009), 943–961.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    L. Warnke: On the method of typical bounded differences, Combinatorics, Proba- bility and Computing, 25 (2016) 269–299.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    L. Zdeborová and F. Krzakala: Phase transitions in the coloring of random graphs, Phys. Rev. E 76 (2007), 031131.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Amin Coja-Oghlan
    • 1
  • Charilaos Efthymiou
    • 1
  • Nor Jaafari
    • 1
  1. 1.Mathematics InstituteGoethe UniversityFrankfurtGermany

Personalised recommendations