Skip to main content
Log in

Computing the partition function for graph homomorphisms

  • Original paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We introduce the partition function of edge-colored graph homomorphisms, of which the usual partition function of graph homomorphisms is a specialization, and present an efficient algorithm to approximate it in a certain domain. Corollaries include effcient algorithms for computing weighted sums approximating the number of k-colorings and the number of independent sets in a graph, as well as an effcient procedure to distinguish pairs of edge-colored graphs with many color-preserving homomorphisms GH from pairs of graphs that need to be substantially modified to acquire a color-preserving homomorphism GH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon and T.H. Marshall: Homomorphisms of edge-colored graphs and Coxeter groups, Journal of Algebraic Combinatorics 8 (1998), 5–13.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Barvinok: Computing the permanent of (some) complex matrices, Foundations of Computational Mathematics 16 (2016), 329–342.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Barvinok: Computing the partition function for cliques in a graph, Theory of Computing 11 (2015), 339–355.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Berman and M. Karpinski: On some tighter inapproximability results (extended abstract), Automata, languages and programming (Prague, 1999) 200-209, in: Lecture Notes in Computer Science, 1644, Springer, Berlin (1999).

    Google Scholar 

  5. B. Bukh: Personal communication, (2015).

    Google Scholar 

  6. A. Bulatov and M. Grohe: The complexity of partition functions, Theoretical Computer Science 348 (2005), 148–186.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-Y. Cai, X. Chen and P. Lu: Graph homomorphisms with complex values: a dichotomy theorem, SIAM Journal on Computing 42 (2013), 924–1029.

    Article  MathSciNet  MATH  Google Scholar 

  8. U. Feige and J. Kilian: Zero knowledge and the chromatic number, Journal of Computer and System Sciences 57 (1998), 187–199.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.X. Goemans and D.P. Williamson: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the Association for Computing Machinery 42 (1995), 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Halperin, R. Nathaniel and U. Zwick: Coloring k-colorable graphs using relatively small palettes, Journal of Algorithms 45 (2002), 72–90.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Hästad: Clique is hard to approximate within n 1−ε, Acta Mathematica 182 (1999), 105–142.

    Article  MathSciNet  Google Scholar 

  12. D. Karger, R. Motwani and M. Sudan: Approximate graph coloring by semidefinite programming, Journal of the ACM 45 (1998), 246–265.

    Article  MathSciNet  MATH  Google Scholar 

  13. T.D. Lee and C.N. Yang: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model, Physical Review (2) 87 (1952), 410–419.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Lovász: Large Networks and Graph Limits, American Mathematical Society Colloquium Publications, 60, American Mathematical Society, Providence, RI, 2012.

    Google Scholar 

  15. D. Weitz: Counting independent sets up to the tree threshold, in: STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing 140-149, ACM, New York, 2006.

    Google Scholar 

  16. C.N. Yang and T.D. Lee: Statistical theory of equations of state and phase transitions. I. Theory of condensation, Physical Review (2) 87 (1952), 404–409.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Zuckerman: Linear degree extractors and the inapproximability of max clique and chromatic number, Theory of Computing 3 (2007), 103–128.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Barvinok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barvinok, A., Soberón, P. Computing the partition function for graph homomorphisms. Combinatorica 37, 633–650 (2017). https://doi.org/10.1007/s00493-016-3357-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-016-3357-2

Mathematics Subject Classification (2000)

Navigation