Density of 5/2-critical graphs

Abstract

A graph G is 5/2-critical if G has no circular 5/2-coloring (or equivalently, homomorphism to C 5), but every proper subgraph of G has one. We prove that every 5/2-critical graph on n ≥ 4 vertices has at least

$$\frac{{5n - 2}}{4}$$

edges, and list all 5/2-critical graphs achieving this bound. This implies that every planar or projective-planar graph of girth at least 10 is 5/2-colorable.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    O. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka and D. B. West: Circular (5,2)-coloring of sparse graphs, Sib. Elektron. Mat. Izv. 5 (2008), 417–426.

    MathSciNet  MATH  Google Scholar 

  2. [2]

    O. Borodin, S.-J. Kim, A. Kostochka and D. West: Homomorphisms from sparse graphs with large girth, Journal of Combinatorial Theory, Series B 90 (2004), 147–159.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    M. DeVos: Open problem garden: Mapping planar graphs to odd cycles http://www.openproblemgarden.org/op/mapping_planar_graphs_to_odd_cycles.

  4. [4]

    H. Grötzsch: Ein Dreifarbensatz für Dreikreisfreie Netze auf der Kugel, Math.Natur. Reihe 8 (1959), 109–120.

    MathSciNet  Google Scholar 

  5. [5]

    F. Jaeger: On circular ows in graphs, in: Finite and Infinite Sets (Eger, 1981), Colloq. Math. Soc. J. Bolyai, vol. 37, 1984, 391–402.

    Article  Google Scholar 

  6. [6]

    W. Klostermeyer and C. Q. Zhang: (2+ε)-coloring of planar graphs with large odd-girth, J. Graph Theory 33 (2000), 109–119.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    A. Kostochka and M. Yancey: Ore’s conjecture for k=4 and Grötzsch Theorem, Manuscript, 2012.

    Google Scholar 

  8. [8]

    O. Ore: The Four Color Problem, Academic Press, New York, 1967.

    Google Scholar 

  9. [9]

    A. Vince: Star chromatic number, Journal of Graph Theory 12 (1988), 551–559.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    X. Zhu: Circular chromatic number: a survey, Discrete Mathematics 229 (2001), 371–410.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    X. Zhu: Circular chromatic number of planar graphs of large odd girth, Electronic J. of Combinatorics 8 (2001), R25.

    MathSciNet  MATH  Google Scholar 

  12. [12]

    X. Zhu: Recent developments in circular colouring of graphs, in: Topics in discrete mathematics, Springer, 2006, 497–550.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Dvořák.

Additional information

Supported by project GA14-19503S (Graph coloring and structure) of Czech Science Foundation.

Partially supported by NSERC under Discovery Grant No. 2014-06162, the Ontario Early Researcher Awards program and the Canada Research Chairs program.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dvořák, Z., Postle, L. Density of 5/2-critical graphs. Combinatorica 37, 863–886 (2017). https://doi.org/10.1007/s00493-016-3356-3

Download citation

Mathematics Subject Classification (2000)

  • 05C15