Abstract
We determine the order of the tower height for the partition size in a version of Szemerédi’s regularity lemma. This addresses a question of Gowers.
This is a preview of subscription content, access via your institution.
References
- [1]
N. Alon and F. R. K. Chung: Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1988), 15–19.
- [2]
N. Alon and J. H. Spencer: The probabilistic method, third ed., John Wiley & Sons Inc., Hoboken, NJ, 2008.
- [3]
Béla Bollobás: The work of William Timothy Gowers, in: Proceedings of the International Congress of Mathematicians Vol. I (Berlin, 1998), no. Extra Vol. I, 1998, 109–118 (electronic).
- [4]
C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi: Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math. 219 (2008), 1801–1851.
- [5]
D. Conlon and J. Fox: Bounds for graph regularity and removal lemmas, Geom. Funct. Anal. 22 (2012), 1191–1256.
- [6]
J Fox, L. M. Lovász and Y. Zhao: On regularity lemmas and their algorithmic applications, in preparation.
- [7]
W. T. Gowers: Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal. 7 (1997), 322–337.
- [8]
W. Hoeffding: Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30.
- [9]
J. Komlós and M. Simonovits: Szemerédi’s regularity lemma and its applications in graph theory, in: Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, 295–352.
- [10]
L. Lovász and B. Szegedy: Szemerédi’s lemma for the analyst, Geom. Funct. Anal. 17 (2007), 252–270.
- [11]
G. Moshkovitz and A. Shapira: A short proof of Gowers’ lower bound for the regularity lemma, Combinatorica, to appear.
- [12]
V. Rödl and M. Schacht: Regularity lemmas for graphs, in: Fete of combinatorics and computer science, Bolyai Soc. Math. Stud., vol. 20, János Bolyai Math. Soc., Budapest, 2010, 287–325.
- [13]
E. Szemerédi: On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.
- [14]
E. Szemerédi: Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, 399–401.
- [15]
T. Tao: Szemerédi’s regularity lemma revisited, Contrib. Discrete Math. 1 (2006), 8–28.
Author information
Affiliations
Corresponding author
Additional information
Research supported by a Packard Fellowship, by a Simons Fellowship, by NSF grant DMS-1069197, by an Alfred P. Sloan Fellowship, and by an MIT NEC Corporation Award.
Rights and permissions
About this article
Cite this article
Fox, J., Lovász, L.M. A tight lower bound for Szemerédi’s regularity lemma. Combinatorica 37, 911–951 (2017). https://doi.org/10.1007/s00493-016-3274-4
Received:
Published:
Issue Date:
Mathematics Subject Classification (2000)
- 05C75