Infinite Graphic Matroids

Abstract

We introduce a class of infinite graphic matroids that contains all the motivating examples and satisfies an extension of Tutte’s excluded minors characterisation of finite graphic matroids.We prove that its members can be represented by certain ‘graph-like’ topological spaces previously considered by Thomassen and Vella.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. H. A. Borujeni and N. Bowler: Thin sums matroids and duality, Advances in Mathematics 271 (2015), 1–29.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    N. Bowler and J. Carmesin: An excluded minors method for infinite matroids, Preprint 2012, current version available at arxiv.org/pdf/1212.3939v1.

  3. [3]

    N. Bowler and J. Carmesin: An excluded minors method for infinite matroids, J. Combin. Theory Ser. B, to appear. Extended preprint version 2012: available at www.math.uni-hamburg.de/spag/dm/papers/excludedminors v5.pdf.

  4. [4]

    N. Bowler and J. Carmesin: Infinite trees of matroids, Preprint 2014, available at arxiv.org/abs/1409.6627.

  5. [5]

    N. Bowler, J. Carmesin and R. Christian: Infinite graphic matroids, Preprint 2013, current version available at arxiv.org/abs/1309.3735.

  6. [6]

    N. Bowler, J. Carmesin and L. Postle: Reconstruction of infinite matroids from their 3-connected minors, extended online edition, European J. Combin., to appear. Preprint 2016, current version available at arxiv.org/abs/1606.04235.

  7. [7]

    H. Bruhn and M. Stein: MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 225–239.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    H. Bruhn and R. Diestel: Infinite matroids in graphs, Discrete Math. 311 (2011), 1461–1471.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    H. Bruhn, R. Diestel, M. Kriesell, R. Pendavingh and P. Wollan: Axioms for infinite matroids, Adv. Math. 239 (2013), 18–46.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    H. Bruhn and M. Stein: Duality of ends, Combin. Probab. Comput. 19 (2010), 47–60.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    H. Bruhn and P. Wollan: Finite connectivity in infinite matroids, European Journal of Combinatorics 33 (2012), 1900–1912.

    MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    R. Christian: Infinite graphs, graph-like spaces and B-matroids, PhD thesis, University of Waterloo, 2010.

    Google Scholar 

  13. [13]

    R. Christian, R. B. Richter and B. Rooney: The planarity theorems of MacLane and Whitney for graph-like continua, Electron. J. Combin. 17 (2010), research Paper 12.

  14. [14]

    R. Diestel: Locally finite graphs with ends: a topological approach, Hamburger Beitr. Math., 340, 2009, see /www.math.uni-hamburg.de/math/research/Preprints/hbm.html.

  15. [15]

    R. Diestel: Graph Theory (4th edition), Springer-Verlag, 2010.

    Google Scholar 

  16. [16]

    D. A. Higgs: Infinite graphs and matroids, Recent Progress in Combinatorics, in: Proceedings Third Waterloo Conference on Combinatorics, Academic Press, 1969, 245–53.

    Google Scholar 

  17. [17]

    J. Oxley: Matroid Theory, Oxford University Press, 1992.

    Google Scholar 

  18. [18]

    M. Stein: Arboriticity and tree-packing in locally finite graphs, J. Combin. Theory (Series B) 96 (2006), 302–312.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    C. Thomassen and A. Vella: Graph-like continua, augmenting arcs, and Menger’s theorem, Combinatorica 28 (2008), 595–623.

    MATH  Google Scholar 

  20. [20]

    W. T. Tutte: Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    A. Vella: A fundamentally topological perspective on graph theory, PhD thesis, University of Waterloo, 2005.

    Google Scholar 

  22. [22]

    A. Vella and R. B. Richter: Cycle spaces in topological spaces, J. Graph Theory 59 (2008), 115–144.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    N. White: Unimodular matroids, in: Combinatorial geometries, volume 29 of Encyclopedia Math. Appl., 40–52, Cambridge Univ. Press, Cambridge, 1987.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johannes Carmesin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bowler, N., Carmesin, J. & Christian, R. Infinite Graphic Matroids. Combinatorica 38, 305–339 (2018). https://doi.org/10.1007/s00493-016-3178-3

Download citation

Mathematics Subject Classification (2000)

  • 05B35
  • 05C63