Asymptotically optimal k-step nilpotency of quadratic algebras and the Fibonacci numbers

Abstract

It follows from the Golod-Shafarevich theorem that if k ∈ N and R is an associative algebra given by n generators and

$$d< \frac{{{n^2}}}{4}{\cos ^{ - 2}}\left( {\frac{\pi }{{k + 1}}} \right)$$

quadratic relations, then R is not k-step nilpotent. We show that the above estimate is asymptotically optimal. Namely, for every k ∈ N, there is a sequence of algebras Rn given by n generators and dn quadratic relations such that R n is k-step nilpotent and

$$\mathop {\lim }\limits_{n \to \infty } \frac{{{d_n}}}{{{n^2}}} = \frac{1}{4}{\cos ^{ - 2}}\left( {\frac{\pi }{{k + 1}}} \right)$$

.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    D. Anick: Generic algebras and CW complexes, Algebraic topology and algebraic Ktheory (Princeton, N.J., 1983), 247-321, Ann. of Math. Stud. 113, Princeton Univ. Press, Princeton, NJ, 1987.

    Google Scholar 

  2. [2]

    D. Anick: Noncommutative graded algebras and their Hilbert series, J. Algebra 78 (1982), 120–140.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    P. Cameron and N. Iyudu: Graphs of relations and Hilbert series, J. Symbolic Comput. 42 (2007), 1066–1078.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    F. Galvin: A proof of Dilworth’s chain decomposition theorem, Amer. Math. Monthly 101 (1994), 352–353.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    E. Golod and I. Shafarevich: On the class field tower (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261–272.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    N. Iyudu and S. Shkarin: The Golod-Shafarevich inequality for Hilbert series of quadratic algebras and the Anick conjecture, in: Proc. Roy. Soc. Edinburgh A141 (2011), 609–629.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    N. Iyudu and S. Shkarin: Finite dimensional semigroup quadratic algebras with minimal number of relations, Monats. Math. 168 (2012), 239–252.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    T. Lenagan and A. Smoktunowicz: An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension, J. Amer. Math. Soc. 20 (2007), 989–1001.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    M. Möbius: Wie erkennt Man eine Fibonacci Zahl?, Math. Semesterber 45 (1998), 243–246.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    M. Newman, C. Schneider and A. Shalev: The entropy of graded algebras, J. Algebra 223 (2000), 85–100.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    A. Polishchuk and L. Positselski: Quadratic algebras, University Lecture Series 37 American Mathematical Society, Providence, RI, 2005

    Google Scholar 

  12. [12]

    A. Smoktunowicz: Some results in non-commutative ring theory, in: International Congress of Mathematicians II, Eur. Math. Soc., Zurich, 259–269 (2006).

    Google Scholar 

  13. [13]

    V. Ufnarovskii: Current problems in mathematics, Combinatorial and asymptotic methods in algebra (Russian), Fundamental directions 57 5–177, Moscow, 1990.

    MathSciNet  Google Scholar 

  14. [14]

    I. Wisliceny: Konstruktion nilpotenter associativer Algebren mit wenig Relationen, Math. Nachr. 147 (1990), 75–82.

    MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    E. Zelmanov: Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc. 44 (2007), 1185–1195.

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    E. Zelmanov: Infinite algebras and pro-p groups, in: Infinite groups: geometric, combinatorial and dynamical aspects, Progress in Mathematics 248, Birkhäuser, Basel, 403–413 (2005).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stanislav Shkarin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iyudu, N., Shkarin, S. Asymptotically optimal k-step nilpotency of quadratic algebras and the Fibonacci numbers. Combinatorica 37, 465–479 (2017). https://doi.org/10.1007/s00493-016-3009-6

Download citation

Mathematics Subject Classification (2000)

  • 17A45
  • 16A22