The Ramsey Numbers for A Triple of Long Cycles

Abstract

We find the asymptotic value of the Ramsey number for a triple of long cycles, where the lengths of the cycles are large but may have different parity.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. A. Bondy and P. Erdos: Ramsey numbers for cycles in graphs, J. Combin. Theory 14 (1973), 46–54.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    P. Erdos: On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), 25–42.

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    P. Erdos, R. J. Faudree, C. C. Rousseau and R. H. Schelp: Generalized Ramsey theory for multiple colors, J. Combin. Th., Series B 20 (1976), 250–264.

    MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    P. Erdos and T. Gallai: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungarica 10 (1956), 337–356.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    R. J. Faudree and R. H. Schelp: All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974), 313–329.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    A. Figaj and T. Luczak: The Ramsey number for a triple of long even cycles, J. Combin. Th. Series B 97 (2007), 584–596.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    A. Gyárfás, M. Ruszinkó, G. N. Sárközy and E. Szemerédi: Three-color Ramsey numbers for paths, Combinatorica 27 (2007), 35–69.

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    G. Károlyi and V. Rosta: Generalized and geometric Ramsey numbers for cycles, Theoret. Comp. Sci. 263 (2001), 87–98.

    MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    J. Komlós and M. Simonovits: Szemerédi's Regularity Lemma and its applications in graph theory, in: "Combinatorics, Paul Erdos is Eighty" (D. Miklós, V. T. Sós, T. Szonyi, Eds.), Bolyai Society Mathematical Studies, vol.2, Budapest, 1996, 295–352.

    Google Scholar 

  10. [10]

    Y. Kohayakawa, M. Simonovits and J. Skokan: The 3-colored Ramsey number of odd cycles, Proceedings of GRACO2005, Electron. Notes Discrete Math. 19, Elsevier, Amsterdam, 2005, 397–402 (electronic).

    Google Scholar 

  11. [11]

    T. Luczak: R(Cn,Cn,Cn)≤(4+o(1))n, J. Combin. Th., Series B 75 (1999), 174–187.

    Article  Google Scholar 

  12. [12]

    S. P. Radziszowski: Small Ramsey numbers, Electronic J. Combin. (2007), #DSI, 1–104.

    Google Scholar 

  13. [13]

    V. Rosta: On a Ramsey type problem of J.A. Bondy and P. Erdos, I & II, J. Combin. Th., Series B 15 (1973), 94–120.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    E. Szemerédi: Regular partitions of graphs, in: "Problèmes Combinatoires et Théorie des Graphes, Proc. Colloque Inter. CNRS" (J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, et D. Sotteau, Eds.), CNRS, Paris, 1978, 399–401.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Figaj.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Figaj, A., Łuczak, T. The Ramsey Numbers for A Triple of Long Cycles. Combinatorica 38, 827–845 (2018). https://doi.org/10.1007/s00493-016-2433-y

Download citation

Mathematics Subject Classification (2000)

  • 05C55
  • 05C38