An exponential-type upper bound for Folkman numbers

Abstract

For given integers k and r, the Folkman number f(k;r) is the smallest number of vertices in a graph G which contains no clique on k+1 vertices, yet for every partition of its edges into r parts, some part contains a clique of order k. The existence (finiteness) of Folkman numbers was established by Folkman (1970) for r=2 and by Nešetřil and Rödl (1976) for arbitrary r, but these proofs led to very weak upper bounds on f(k;r).

Recently, Conlon and Gowers and independently the authors obtained a doubly exponential bound on f(k;2). Here, we establish a further improvement by showing an upper bound on f(k;r) which is exponential in a polynomial of k and r. This is comparable to the known lower bound 2Ω(rk). Our proof relies on a recent result of Saxton and Thomason (or, alternatively, on a recent result of Balogh, Morris, and Samotij) from which we deduce a quantitative version of Ramsey’s theorem in random graphs.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Balogh, R. Morris and W. Samotij: Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), 669–709.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    D. Conlon and T. Gowers: An upper bound for Folkman numbers, preprint.

  3. [3]

    D. Conlon and T. Gowers: Combinatorial theorems in sparse random sets, submitted.

  4. [4]

    A. Dudek and R. Ramadurai: Some Remarks on Vertex Folkman Numbers For Hypergraphs, Discrete Mathematics 312 (2012), 2952–2957.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    A. Dudek and V. Rödl: On the Folkman Number f(2;3; 4), Experimental Mathematics 17 (2008), 63–67.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    A. Dudek and V. Rödl: An Almost Quadratic Bound on Vertex Folkman Numbers, Journal of Combinatorial Theory, Ser. B 100 (2010), 132–140.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    P. Erdős: Problems and results in finite and infinite graphs, Proc. of the Second Czechoslovak International Symposium, ed. M. Fiedler, Academia Praha (1975), 183–192.

    Google Scholar 

  8. [8]

    P. Erdős and A. Hajnal: Problems 2-3, J. Combin. Th. 2 (1967), 104–105.

    Article  Google Scholar 

  9. [9]

    E. Friedgut, V. Rödl and M. Schacht: Ramsey properties of random discrete structures, Random Structures Algorithms 37(4) (2010), 407–436.

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    J. Folkman: Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    A. Frieze and M. Karoński: Introduction to Random Graphs, to appear.

  12. [12]

    R. L. Graham: On edge-wise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Th. 4 (1968), 300.

    Article  MATH  Google Scholar 

  13. [13]

    S. Janson, T. Luczak and A. Ruciński: Random Graphs, John Wiley and Sons, New York (2000).

    Book  MATH  Google Scholar 

  14. [14]

    H. Lefmann: A note on Ramsey numbers, Studia Sci. Math. Hungar. 22(1–4) (1987), 445–446.

    MathSciNet  MATH  Google Scholar 

  15. [15]

    R. Nenadov and A. Steger: A short proof of the random Ramsey theorem, Comb. Prob. Comp. 25 (2016), 130–144.

    MathSciNet  Article  Google Scholar 

  16. [16]

    N. Nenov: An example of 15-vertex (3,3)-Ramsey graph with the clique number 4, C.R. Acad. Bulg. Sci. 34 (1981), 1487–1489.

    MathSciNet  MATH  Google Scholar 

  17. [17]

    J. Nešetřil and V. Rödl: The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Th. Ser. B 20 (1976), 243–249.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    K. Piwakowski, S.P. Radziszowski and S Urbański: Computation of the Folkman number Fe(3,3;5), J. Graph Theory 32 (1999), 41–49.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    S. P. Radziszowski and X. Xu: On the Most Wanted Folkman Graph, Geocombinatiorics 16 (2007), 367–381.

    MathSciNet  Google Scholar 

  20. [20]

    V. Rödl and A. Ruciński: Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–942.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    V. Rödl and A. Ruciński: Ramsey properties of random hypergraphs, Journal Combin. Theory, Series A 81 (1998), 1–33.

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    V. Rödl, A. Ruciński and M. Schacht: Ramsey properties of random k-partite, k-uniform hypergraphs, SIAM J. of Discrete Math. 21(2) (2007), 442–460.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    V. Rödl, A. Ruciński and M. Schacht: Ramsey properties of random graphs and Folkman numbers, submitted.

  24. [24]

    D. Saxton and A. Thomason: Hypergraph containers, Inventiones Mathematicae 201 (2015), 925–992.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    Th. Skolem: Ein kombinatorischer Satz mit Anwendung auf ein logisches Entscheidungsproblem, Fundamenta Mathematicae 20 (1933), 254–261.

    MATH  Google Scholar 

  26. [26]

    S. Urbański: Remarks on 15-vertex (3;3)-Ramsey graphs not containing K 5, Discuss. Math. Graph Theory 16 (1996), 173–179.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mathias Schacht.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rödl, V., Ruciński, A. & Schacht, M. An exponential-type upper bound for Folkman numbers. Combinatorica 37, 767–784 (2017). https://doi.org/10.1007/s00493-015-3298-1

Download citation

Mathematics Subject Classification (2000)

  • 05D10
  • 05C80