Warning’s Second Theorem with restricted variables

Abstract

We present a restricted variable generalization of Warning’s Second Theorem (a result giving a lower bound on the number of solutions of a low degree polynomial system over a finite field, assuming one solution exists). This is analogous to Schauz-Brink’s restricted variable generalization of Chevalley’s Theorem (a result giving conditions for a low degree polynomial system not to have exactly one solution). Just as Warning’s Second Theorem implies Chevalley’s Theorem, our result implies Schauz-Brink’s Theorem. We include several combinatorial applications, enough to show that we have a general tool for obtaining quantitative refinements of combinatorial existence theorems.

Let q = p be a power of a prime number p, and let F q be “the” finite field of order q.

For a 1,...,a n , N∈Z+, we denote by m(a 1,...,a n ;N)∈Z+ a certain combinatorial quantity defined and computed in Section 2.1.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    N. Alon, D. Kleitman, R. Lipton, R. Meshulam, M. Rabin and J. Spencer: Set systems with no union of cardinality 0 modulo m, Graphs Combin. 7 (1991), 97–99.

    MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    N. Alon and Z. Füredi: Covering the cube by affne hyperplanes, Eur. J. Comb. 14 (1993), 79–83.

    Article  MATH  Google Scholar 

  3. [3]

    N. Alon: Combinatorial Nullstellensatz, Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), 7–29.

    MathSciNet  Article  Google Scholar 

  4. [4]

    J. Ax: Zeroes of polynomials over finite fields, Amer. J. Math. 86 (1964), 255–261.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    C. Bailey and R. B. Richter: Sum zero (mod n), size n subsets of integers, Amer. Math. Monthly 96 (1989), 240–242.

    MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    D. Brink: Chevalley’s theorem with restricted variables, Combinatorica 31 (2011), 127–130.

    MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    L. Carlitz: A Characterization of Algebraic Number Fields with Class Number Two, Proc. AMS 11 (1960), 391–392.

    MathSciNet  MATH  Google Scholar 

  8. [8]

    G. J. Chang, S.-H. Chen., Y. Qu, G. Wang and H. Zhang: On the number of subsequences with a given sum in a finite abelian group, Electron. J. Combin. 18 (2011), Paper 133.

    MathSciNet  MATH  Google Scholar 

  9. [9]

    A. Chattopadhyay, N. Goyal, P. Pudlák and D. Thérien: Lower bounds for circuits with MODm gates, Proc. 47th Annual Symp. on Foundations of Computer Science, IEEE 2006, 709–718.

    Google Scholar 

  10. [10]

    C. Chevalley: Démonstration d’une hypothèse de M. Artin, Abh. Math. Sem. Univ. Hamburg 11 (1935), 73–75.

    MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    P. L. Clark: The Combinatorial Nullstellensätze Revisited, Electronic Journal of Combinatorics 21 (2014), Paper #P4.15.

    MATH  Google Scholar 

  12. [12]

    S. Das Adhikari, D. J. Grynkiewicz and Z.-W. Sun: On weighted zero-sum sequences, Adv. in Appl. Math. 48 (2012), 506–527.

    MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    L. E. Dickson: On the representation of numbers by modular forms, Bull. Amer. Math. Soc. 15 (1909), 338–347.

    MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    P. van Emde Boas and D. Kruyswijk: A combinatorial problem on finite abelian groups, III, Report ZW-1969-008, Math. Centre, Amsterdam, 1969.

    Google Scholar 

  15. [15]

    P. Erdős, A. Ginzburg and A. Ziv: Theorem in the additive number theory, Bull. Research Council Israel 10F (1961), 41–43.

    MATH  Google Scholar 

  16. [16]

    H. Esnault: Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math. 151 (2003), 187–191.

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    D. R. Heath-Brown: On Chevalley-Warning theorems, Uspekhi Mat. Nauk 66 (2011), 223–232; translation in: Russian Math. Surveys 66 (2011), 427–436.

    MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    N. M. Katz: On a theorem of Ax, Amer. J. Math. 93 (1971), 485–499.

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    R. N. Karasev and F. V. Petrov: Partitions of nonzero elements of a finite field into pairs, Israel J. Math. 192 (2012), 143–156.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    M. Lasoń: A generalization of combinatorial Nullstellensatz, Electron. J. Combin. 17 (2010), Note 32.

    MathSciNet  MATH  Google Scholar 

  21. [21]

    D. G. Mead and W. Narkiewicz: The capacity of C 5 and free sets in C m 2, Proc. Amer. Math. Soc. 84 (1982), 308–310.

    MathSciNet  MATH  Google Scholar 

  22. [22]

    J. E. Olson: A combinatorial problem on finite Abelian groups, I. J. Number Theory 1 (1969), 8–10.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    J. E. Olson: A combinatorial problem on finite Abelian groups, II, J. Number Theory 1 (1969), 195–199.

    MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    S. H. Schanuel: An extension of Chevalley’s theorem to congruences modulo prime powers, J. Number Theory 6 (1974), 284–290.

    MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    U. Schauz: Algebraically solvable problems: describing polynomials as equivalent to explicit solutions, Electron. J. Combin. 15 (2008), Research Paper 10.

    MathSciNet  MATH  Google Scholar 

  26. [26]

    C. C. Tsen: Divisionsalgebren über Funktionenkörpern, Nachr. Ges. Wiss. Göttingen (1933), 335–339.

    Google Scholar 

  27. [27]

    G. Troi and U. Zannier: On a theorem of J. E. Olson and an application (vanishing sums in finite abelian p-groups), Finite Fields Appl. 3 (1997), 378–384.

    MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    R. J. Valenza: Elasticity of factorizations in number fields, J. Number Theory 36 (1990), 212–218.

    MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    E. Warning: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley, Abh. Math. Sem. Hamburg 11 (1935), 76–83.

    MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    R. M. Wilson: Some applications of polynomials in combinatorics, EPM lectures, May, 2006.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pete L. Clark.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, P.L., Forrow, A. & Schmitt, J.R. Warning’s Second Theorem with restricted variables. Combinatorica 37, 397–417 (2017). https://doi.org/10.1007/s00493-015-3267-8

Download citation

Mathematics Subject Classification (2000)

  • 11T99